Data Mining II (FSS 2022)

Building on the Data Mining fundamentals course, this course deepens the theory and practice of advanced data mining topics, such as:

  • Data Preprocessing
  • Dimensionality Reduction
  • Anomaly Detection
  • Time Series Analysis and Forecasting
  • Parameter Tuning
  • Ensemble Methods
  • Neural Networks and Deep Learning
  • Model Validation

The course consists of a lecture together with accompanying practical exercises as well as student team projects.  In the exercises the participants will gather initial expertise in applying state of the art data mining tools on realistic data sets.

Like in the previous years, participants will take part in the annual Data Mining Cup (DMC), an international student competition in data mining, as part of the project work. In addition to the DMC submission, the approaches and results of the project have to be compiled into a written project report, and presented in a plenary session.

Exam Review

The exam review for the retake exam of FSS2022 will take place on Wednesday, November 16th at 2pm in B6 C1.01. Please write a short mail to Nico if you are planning to come to the review.

Time and Location

At the moment, we assume that the course can be held in presence, but we are closely monitoring the pandemic situation, and we are prepared to switch to an online or hybrid setting.

Lecture:

  • Tuesday, 13.45 – 15.15,  A5, 6, B144 (starts on February 22nd)

For students who cannot attend the lecture (e.g., due to visa problems or quarantine), we will provide lecture recordings from the previous year.

We'll have three alternatives for the exercise:

  • Exercise: Monday, 10.15 – 11.45, online: ZOOM-LEHRE-101
  • Exercise: Monday, 12.00 – 13.30, online: ZOOM-LEHRE-101
  • Exercise: Monday, 13.45 – 15.15, A5, 6, C012

The exercises start on February 28th.

All exercises are equivalent, you are supposed to attend one out of the three.