Artificial Intelligence

(Prof. Stuckenschmidt)

Icon Notizbuch mit Stift

Applications for Bachelor and Master Thesis

The Chair of Artificial Intelligence (Prof. Stuckenschmidt) offers the topics for master thesis that can be found here. Applications should be send to the contact mentioned on that page. For bachelor thesis we do not offer such a list. Please directly contact the lecturer/researcher of the course/topic you are interested in.

Artificial Intelligence Research Group

We conduct fundamental and applied research in Artificial Intelligence. We develop AI methods that address the specific challenges of a number of application areas in Industry and Society:

People

Projects

Projects

Software and Data

Courses FSS

Industrial Applications of Artificial Intelligence – Lecture (Lecture, english)
Course type:
Lecture
ECTS:
6
Course suitable for:
Language of instruction:
english
Credit hours 1:
2
Attendance:
On-campus and online, live & recorded
Learning target:
Expertise:

Students will acquire knowledge about possible applications of machine learning in different branches of industry as well as the dominant methods used in these areas:
  • Primary Sector: Agriculture, Energy Production
  • Secondary Sector: Production, Supply Chain Management
  • Tertiary Sector: Healthcare, Education, Finance

Methodological competence:

Successful participants will be able to: Identify potential for applying AI methods in different areas of industry; Decide on a suitable method for addressing typical problems in these industries

Personal competence:

Participants will learn to reflect and document their own learning process
Recommended requirement:
Literature:
Various Scientific Publications – details in the lecture slides
Examination achievement:
Submission of a Learning Portfolio
Instructor(s):
Prof. Dr. Heiner Stuckenschmidt
Description:
Participants will learn about the use of Artificial Intelligence methods, mostly from the field of machine learning in different sectors and industries. They will learn about application areas in the primary, secondary and tertiary sector, get an introduction to examples of such applications that have been published on a scientific level and gather some experience in working with data from the respective fields using publically available datasets.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Wirtschaftsinformatik II: Grundlagen der Modellierung (Lecture, german)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
german
Credit hours 1:
2
Attendance:
On-campus and online, live
Learning target:
Fachkompetenz:
  • Kenntnisse aktueller Modellierungssprachen und Werkzeugen.
  • Verständnis für Grundprinzipien und Formalen Grundlagen der Modellierung von Anwendungsdomänen und Prozessen.

Methodenkompetenz:
  • Beschreibung von Domänen und Prozesse einfacher und mittlerer Komplexität mit Hilfe gängiger Sprachen und Werkzeuge

Personale Kompetenz:
  • Verständnis komplexer Zusammenhänge, Arbeiten im Team, Kommunikation von Modellierungsentscheidungen
Recommended requirement:
Examination achievement:
Studienbeginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungsbetrieb
Schriftliche Klausur (90 Minuten)

Studienbeginn vor HWS 2011:
Schriftliche Klausur (90 Minuten)

Instructor(s):
Prof. Dr. Heiner Stuckenschmidt, Dr. Christian Meilicke
Description:
Die Vorlesung behandelt die Rolle konzeptueller Modellierung in der Wirtschaftsinformatik. Es werden Vorteile und Grenzen der Modlelierung im Unternehmenkontext aufgezeigt und Modellierungssprachen und Werkzeuge eingeführt. Inhalte der Veranstaltung umfassen unter anderem:
  • Modellierungsprinzipien
  • Praxisnahe Sprachen (UML, BPMN)
  • Formale Grundlagen von Modellierungssprachen (Logik, Pertri-Netze)
  • Modellierungswerkzeuge.
In der begleitenden Übung erstellen die Teilnehmer konzpetuelle Modelle realer Anwendungsdomänen mit Hilfe aktueller Modellierungssprachen und Werkzeuge.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Courses HWS

Foundations of Artificial Intelligence – Reasoning and Decision Making (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
1
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.202512:00 – 13:30C 013 Hörsaal; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Foundations of Artificial Intelligence – Reasoning and Decision Making (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Jakob Kappenberger, Ricarda Link
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.202513:45 – 15:15A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Foundations of Artificial Intelligence – Reasoning and Decision Making (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Jakob Kappenberger, Ricarda Link
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.202515:30 – 17:00A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Foundations of Artificial Intelligence: Search and Problem Solving (Lecture, )
Course type:
Lecture
ECTS:
Course suitable for:
Language of instruction:
Attendance:
Live & on-campus
Recommended requirement:
Instructor(s):
Dr. Christian Meilicke
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.202513:45 – 15:15A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Description:

Diese Veranstaltung wird in den kommenden Jahren schrittweise ins Englische übersetzt. Aktuell ist der Großteil der Veranstaltung in Deutsch. 2025 werden die Übungsblätter auf Englisch ausgegeben. Fragen in der Vorlesung und Übung können in Deutsch oder Englisch gestellt werden. Bei der abschließenden Klausur kann zwischen Deutsch und English gewählt werden. Ca. 80% der Inhalte sind einem bekannten Lehrbuch zu entnehmen, das auf Deutsch und Englisch erhältlich ist.

This course will be gradually translated into English over the coming years. Currently, the majority of the course is held in German. In 2025, the exercise sheets will be distributed in English. Questions in the lecture and exercises can be asked in German or English. Students can choose between German and English for the final exam. Approximately 80% of the content is taken from a well-known textbook, which is available in both German and English.
 

Die Veranstaltung behandelt die Thema Suche und Problemlösen als Teilbereich der Künstlichen Intelligenz. Insbesondere werden die folgenden Themen behandelt. Block II bis IV beschäftigt sich dabei letztlich auch mit speziellen Formen von Suchverfahren.

Block I: Problemlösen als Suche
Problemlösen als Suche
Heuristische und lokale Suche
Suchalgorithmen für Spiele (Programmierprojekt Bohnenspiel)
Lokale Suchverfahren

Block II: Constraints
Problemlösen mit Constraints

Block III: Aussagenlogik
Effizientes Schließen mit Aussagenlogik
Modellieren mit Aussagenlogik 

Block IV: Planen
Planen als Suche und Erfüllbarkeitsproblem
Planen mit dem Planungsgraph

Eventuell wird es noch einen fünfte Block zu einem weiteren Thema geben

Publications (past 5 years only)

2026

2025

2024

2023

2022

2021

2026

  • Özdemir, K., Kirchdorfer, L., Amiri Elyasi, K., van der Aa, H. and Stuckenschmidt, H. (2026). Rethinking business process simulation: A utility-based evaluation framework. In , Business Process Management Forum : BPM 2025 Forum, Seville, Spain, August 31 – September 5, 2025, Proceedings (S. ). Lecture Notes in Business Information Processing : LNBIP, Springer: Berlin [u. a.].

2025

2024

2023

2022

2021

2025

2024

2023

2022

2021