Artificial Intelligence

(Prof. Stuckenschmidt)

Icon Notizbuch mit Stift

Applications for Bachelor and Master Thesis

The Chair of Artificial Intelligence (Prof. Stuckenschmidt) offers the topics for master thesis that can be found here. Applications should be send to the contact mentioned on that page. For bachelor thesis we do not offer such a list. Please directly contact the lecturer/researcher of the course/topic you are interested in.

Artificial Intelligence Research Group

We conduct fundamental and applied research in Artificial Intelligence. We develop AI methods that address the specific challenges of a number of application areas in Industry and Society:

People

Projects

Projects

Software and Data

Courses FSS

Industrial Applications of Artificial Intelligence – Lecture (Lecture, english)
Course type:
Lecture
ECTS:
6
Course suitable for:
Language of instruction:
english
Credit hours 1:
2
Attendance:
On-campus and online, live & recorded
Learning target:
Expertise:

Students will acquire knowledge about possible applications of machine learning in different branches of industry as well as the dominant methods used in these areas:
  • Primary Sector: Agriculture, Energy Production
  • Secondary Sector: Production, Supply Chain Management
  • Tertiary Sector: Healthcare, Education, Finance

Methodological competence:

Successful participants will be able to: Identify potential for applying AI methods in different areas of industry; Decide on a suitable method for addressing typical problems in these industries

Personal competence:

Participants will learn to reflect and document their own learning process
Recommended requirement:
Literature:
Various Scientific Publications – details in the lecture slides
Examination achievement:
Submission of a Learning Portfolio
Instructor(s):
Prof. Dr. Heiner Stuckenschmidt
Description:
Participants will learn about the use of Artificial Intelligence methods, mostly from the field of machine learning in different sectors and industries. They will learn about application areas in the primary, secondary and tertiary sector, get an introduction to examples of such applications that have been published on a scientific level and gather some experience in working with data from the respective fields using publically available datasets.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Wirtschaftsinformatik II: Grundlagen der Modellierung (Lecture, german)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
german
Credit hours 1:
2
Attendance:
On-campus and online, live
Learning target:
Fachkompetenz:
  • Kenntnisse aktueller Modellierungssprachen und Werkzeugen.
  • Verständnis für Grundprinzipien und Formalen Grundlagen der Modellierung von Anwendungsdomänen und Prozessen.

Methodenkompetenz:
  • Beschreibung von Domänen und Prozesse einfacher und mittlerer Komplexität mit Hilfe gängiger Sprachen und Werkzeuge

Personale Kompetenz:
  • Verständnis komplexer Zusammenhänge, Arbeiten im Team, Kommunikation von Modellierungsentscheidungen
Recommended requirement:
Examination achievement:
Studienbeginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungsbetrieb
Schriftliche Klausur (90 Minuten)

Studienbeginn vor HWS 2011:
Schriftliche Klausur (90 Minuten)

Instructor(s):
Prof. Dr. Heiner Stuckenschmidt, Dr. Christian Meilicke
Description:
Die Vorlesung behandelt die Rolle konzeptueller Modellierung in der Wirtschaftsinformatik. Es werden Vorteile und Grenzen der Modlelierung im Unternehmenkontext aufgezeigt und Modellierungssprachen und Werkzeuge eingeführt. Inhalte der Veranstaltung umfassen unter anderem:
  • Modellierungsprinzipien
  • Praxisnahe Sprachen (UML, BPMN)
  • Formale Grundlagen von Modellierungssprachen (Logik, Pertri-Netze)
  • Modellierungswerkzeuge.
In der begleitenden Übung erstellen die Teilnehmer konzpetuelle Modelle realer Anwendungsdomänen mit Hilfe aktueller Modellierungssprachen und Werkzeuge.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Courses HWS

Data Science in Action (ENGAGE.EU Signature Course) (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Language of instruction:
english
Credit hours 1:
2
Attendance:
Online, live
Recommended requirement:
Literature:
Recommended Papers from invited speakers
Examination achievement:
Written Essay
Instructor(s):
Prof. Dr. Heiner Stuckenschmidt
Description:
The Mannheim Center for Data Science (MCDS) offers a lecture series on “Data Science in Action” together with the European University ENGAGE.EU (Signature Course). Renowned researchers from the University of Mannheim and its partner universities Université Toulouse Capitole, Tilburg University, Hanken School of Economics, Norwegian School of Economics (NHH) and  WU Vienna University of Economics and Business will provide insights into their data-based research. The speakers represent various disciplines, including business administration, computer science, political science, business education, media and communication studies, sociology, psychology and linguistics. The lecture series thus represents the relevance of data science in its entire breadth for science and society.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
1
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture, english)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
english
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Artificial Intelligence (Lecture, german)
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
german
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Ziele und Grundlagen der Künstlichen Intelligenz. Suchverfahren als universelle Problemlösungsverfahren. Problemkomplexität und Heuristische Lösungen. Eigenschaften und Zusammenhang zwischen unterschiedlichen Suchverfahren.
Methodenkompetenz:
Beschreibung konkreter Aufgaben als Such-, Constraint- oder Planungsproblem. Implementierung unterschiedlicher Suchverfahren und Heuristiken.
Recommended requirement:
Examination achievement:
Erfolgreiche Teilnahme am Übungsbetrieb
schriftliche Klausur (90 Minuten)
Instructor(s):
Dr. Christian Meilicke
Description:
  • Problemeigenschaften und Problemtypen
  • Problemlösen als Suche, Anwendung im Bereich Computerspiele
  • Constraintprobleme und deren Lösung
  • Logische Constraints
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Publications (past 5 years only)

2026

2025

2024

2023

2022

2021

2026

  • Özdemir, K., Kirchdorfer, L., Amiri Elyasi, K., van der Aa, H. and Stuckenschmidt, H. (2026). Rethinking business process simulation: A utility-based evaluation framework. In , Business Process Management Forum : BPM 2025 Forum, Seville, Spain, August 31 – September 5, 2025, Proceedings (S. ). Lecture Notes in Business Information Processing : LNBIP, Springer: Berlin [u. a.].

2025

2024

2023

2022

2021

2025

2024

2023

2022

2021