Information on your course choice

Please note that you have to take the majority of classes at the School of Business Informatics and Mathematics.

To start the registration procedure, please click on ‘More information’ below to be redirected to Portal2. Please sign up for all courses directly on the Portal2. For seminars and Team Projects please follow the respective notes on the websites of your lecturers. The registration period differs for courses with limited and open capacity.

If you're an undergraduate student, you might take graduate-level courses at the School of Business, Informatics and Mathematics. However, please pay attention to any prerequisites.

Search filter

Business Informatics (Bachelor)

Algorithms and Data Structures (Lecture)
DE
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
6
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Die Studierenden kennen effiziente Algorithmen und effektive Datenstrukturen für grundlegende Probleme der Informatik und können diese  anwenden und in Computerprogramme umsetzen. Sie beherrschen weiterhin grundlegende Techniken des Entwurfs von Algorithmen und Datenstrukturen, sowie der Korrektheits- und Laufzeitanalyse von Algorithmen
Methodenkompetenz:
Die Studierenden können anwendungsrelevanten Berechnungsproblemen effiziente Algorithmen zuzuordnen bzw. diese  entwickeln und
mittels dieser lösen.
Personale Kompetenz:
Die Studierenden können Berechnungsprobleme in Anwendungszusammenhängen identifizieren, sie formal spezifizieren und damit einer rechentechnischen Lösung zuführen. Sie können auf höherem Niveau abstrahieren und mit formalen Modellierungstechniken arbeiten.
Recommended requirement:
Examination achievement:
Schriftliche Klausur (90 Minuten)
Instructor(s):
Prof. Dr. Matthias Krause
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Wednesday  (weekly) 03.09.2025 – 03.12.2025 10:15 – 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Thursday  (weekly) 04.09.2025 – 04.12.2025 17:15 – 18:45 B 144 Hörsaal; A 5, 6 Bauteil B
Description:
  • Grundtechniken des Algorithmenentwurfs sowie der Laufzeitanalyse (Divide and Conquer, Greedyheuristiken, Dynamic Programming,…)
  • Grundtechniken des Beweisens der Korrektheit von Algorithmen
  • Sortieralgorithmen
  • Hashing und hashingbasierte Algorithmen
  • Advanced Data Structures
  • Algorithmen für Suchbäume
  • Graphalgorithmen (Tiefensuche, Breitensuche, Minimum Spanning Trees, Kürzeste-Wege-Algorithmen)
  • Ausgewählte weitere Algorithmen (z. B. Pattern Matching, Automatenminimierung…)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Database Systems I (Lecture)
DE
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
Verständnis der Grundlagen der Datenmodellierung bzw. des Datenbankentwurfs und der Funktionsweise von relationalen Datenbankmanagementsystemen, insbesondere Anfragebearbeitung und Transaktionsverwaltung
Methodenkompetenz:
Abstraktion, Modellierung, Aufwandsabschätzung für Anfragen
Personale Kompetenz:
Verständnis der Rolle moderner Datenhaltung in einem Unternehmen
Recommended requirement:
Examination achievement:
schriftliche Klausur (90 Minuten)
Date(s):
Wednesday  (weekly) 03.09.2025 – 03.12.2025 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Monday  (weekly) 08.09.2025 – 01.12.2025 12:00 – 13:30 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
Datenbankentwurf, Normalisierung, Anfragebearbeitung, Transaktionsverwaltung
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
1
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Formal Foundations of Computer Science (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Die Studierenden beherrschen grundlegende für die Informatik rele-vanten Konzepte, Begriffsbildungen und wissenschaftlichen Arbeits-techniken aus Mathematik und Logik. Sie kennen weiterhin eine erste Auswahl an wichtigen Datenstrukturen und  effizienten Algorithmen für grundlegende Probleme.
Methodenkompetenz:
Die Studierenden besitzen die Fähigkeit, informal gegebene Sachver-halte formal zu modellieren und die entstehenden formalen Struktu-ren bzgl. grundlegender Eigenschaften zu klassifizieren. Sie können weiterhin  auf einem für Informatiker adäquaten Niveau gegebene Aussagen mathematisch  beweisen.
Personale Kompetenz:
Die Studierenden besitzen ein Grundverständnis der för die Informa-tik wichtigen formalen Strukturen, Modelle und Arbeitstechniken. Sie können auf höherem Niveau abstrakt denken und formal modellieren.
Recommended requirement:
Examination achievement:
Schriftliche Klausur (90 Minuten)
Instructor(s):
Prof. Dr. Matthias Krause
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 04.09.2025 – 04.12.2025 13:45 – 15:15 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
  • Grundlagen Aussagenlogik (Folgern, Beweisen)
  • Mengen, Relationen, Abbildungen
  • Grundlagen der Kombinatorik (Abzählen von endlichen Mengen, Abzählbarkeit)
  • Einführung Graphentheorie
  • Algebraische Strukturen (Halbgruppen, Gruppen, Homorphismen, Faktorstrukturen)
  • Grundlegende Berechnungsmodelle/Endliche Automaten
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Integrated Information Systems (Wifo) (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
2
Attendance:
Learning target:
After attending the lecture, exercises and tutorials students are able to:
  • model complex business processes based on popular modelling techniques
  • discuss the requirements, characteristics and effects of integrated information systems in industrial companies, including complex process interdependencies
  • complete basic tasks from different functional areas in a wide-spread integrated information system.
Recommended requirement:
Examination achievement:
Klausur (90 Minuten)
Instructor(s):
Prof. Dr. Armin Heinzl, Dr. André Halckenhäußer
Date(s):
Friday  (weekly) 17.10.2025 – 05.12.2025 10:15 – 13:30 SN 169 Röchling Hörsaal; Schloss Schneckenhof Nord
Description:
This course first outlines the basics of data and business process modelling based on wide-spread approaches such as entity relationship diagrams, event-driven process chains (EPC), and business process model and notation (BPMN). The remainder of the course then focuses on the use and purpose of integrated information systems across different functional areas in industrial companies. Finally, basics of management support systems such as business intelligence systems are addressed.
 
  • Business Process Modelling
  • Application Systems in
    • Research and Development
    • Marketing and Sales
    • Procurement and Warehousing
    • Production
    • Shipping and Customer Service
    • Finance, Accounting, HR
  • Planning and Control Systems
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Artificial Intelligence (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Ziele und Grundlagen der Künstlichen Intelligenz. Suchverfahren als universelle Problemlösungsverfahren. Problemkomplexität und Heuristische Lösungen. Eigenschaften und Zusammenhang zwischen unterschiedlichen Suchverfahren.
Methodenkompetenz:
Beschreibung konkreter Aufgaben als Such-, Constraint- oder Planungsproblem. Implementierung unterschiedlicher Suchverfahren und Heuristiken.
Recommended requirement:
Examination achievement:
Erfolgreiche Teilnahme am Übungsbetrieb
schriftliche Klausur (90 Minuten)
Instructor(s):
Dr. Christian Meilicke, Ralph Bubak
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 13:45 – 15:15 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Wednesday  (weekly) 03.09.2025 – 03.12.2025 12:00 – 13:30 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Description:
  • Problemeigenschaften und Problemtypen
  • Problemlösen als Suche, Anwendung im Bereich Computerspiele
  • Constraintprobleme und deren Lösung
  • Logische Constraints
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Large-Scale Data Management (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
4
Learning target:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Recommended requirement:
Examination achievement:
Written examination, exercises
90 minutes
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its ecosystem
• NoSQL
• Stream processing
• Graph databases
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Practical Computer Science I (Lecture)
DE
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
6
Learning target:
Fachkompetenz:
Die Studierenden können selbständig Algorithmen zu vorgegebenen Problemen entwerfen und in Java, das im parallel laufenden Pro-grammierkurs I unterrichtet wird, objektorientiert programmieren. Methodenkompetenz:
Algorithmenentwurf, Bewertung von vorgegeben Algorithmen Personale Kompetenz:
Kreativität beim Entwurf von Algorithmen, Teamfähigkeit
Recommended requirement:
Examination achievement:
Studienbeginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungsbetrieb
schriftliche Klausur (90 Minuten)

Studienbeginn vor HWS 2011:
schriftliche Klausur (90 Minuten)

Instructor(s):
Prof. Dr. Frederik Armknecht
Date(s):
Thursday  (weekly) 04.09.2025 – 04.12.2025 15:30 – 17:00 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
Vom Problem zum Algorithmus, vom Algorithmus zum Programm
  • Entwurf von Algorithmen: schrittweise Verfeinerung, Modularität, Objektorientierung (Klassen­hierarchien, Vererbung), Rekursion
  • Die objektorientierte Programmiersprache Java
  • Einfache Datenstrukturen (verkettete Liste, Binärbaum, B-Baum)
  • Modellierung mit UML: Klassendiagramme, Aktivitätsdiagramme, Zustandsdiagramme
  • Einführung in die Theorie der Algorithmen: Berechenbarkeit, Komplexität (O-Kalkül), Testen und Verifikation von Algorithmen und Programmen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Programming Lab I (Lecture)
DE
Course type:
Lecture
ECTS:
5.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
On-campus and online, live
Learning target:
Fachkompetenz:
  • Gründliche Kenntnis der Basiskonzepte der Programmiersprache Java
  • Verständnis des Konzepts der Objektorientierung
  • Kenntnisse der algorithmischen Prinzipien  Iteration und Rekursion
  • Basiswissen über das Arbeiten unter einem Linux-Betriebssystem

Methodenkompetenz:

  • Fähigkeit, Algorithmen zu entwerfen
  • Fähigkeit, komplexe Algorithmen in Java ohne Einsatz importierter Methoden zu programmieren
  • Fähigkeit, rekursiv zu programmieren

Personale Kompetenz:

  • Eigenverantwortliches Arbeiten
  • Teamfähigkeit
Recommended requirement:
Examination achievement:
Programmiertestate, Programmierprojekte, Programming Competence Test (180 Minuten)
Instructor(s):
Dr. Ursula Rost
Date(s):
Thursday  (weekly) 04.09.2025 – 04.12.2025 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
Im Programmierpraktikum I werden grundlegende Kenntnisse der objektorientierten Programmierung auf Basis der Sprache Java vermittelt.
Die Studierenden werden von dieser Sprache vor allem folgende Grundmerkmale und Konzepte kennenlernen:
 
  • Basiskonzepte der Programmierung: einfache Datentypen, Variablen, Operatoren, Anweisungen, Kontrollstrukturen
  • Zusammengesetzte Datentypen (Felder)
  • Das Konzept der objektorientierten Programmierung
  • Klassen (Attribute, Methoden, Konstruktoren)
  • Vererbung
  • Pakete, abstrakte Klassen und Interfaces
  • Java API und wichtige Hilfsklassen
  • Ausnahmebehandlung: Exceptions
  • Programmierung Grafischer Oberflächen mit Swing

Die Programmierausbildung erfolgt auf der Basis des Betriebssystems Linux. Hierzu werden ebenfalls Grundkenntnisse vermittelt, die es ermöglichen, einfache Java-Programme zu entwickeln. Im Laufe des Kurses wird darüber hinaus eine einfache Entwicklungsumgebung eingeführt.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Business Informatics I: Introduction and Foundations (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
2
Attendance:
Learning target:
Anhand der Vorlesung sollen Sie erlernen, dass Wirtschaftsinformatik mehr als die Nutzung von Informationstechnik ist. Die Inhalte werden Sie im weiteren Verlauf Ihres Studiums sowie bei der Verwertung des erlernten Wissens in ihrer Bachelorarbeit nutzenbringend verwerten können.
Recommended requirement:
Examination achievement:
80% Schriftliche Klausur (90 Minuten)
20% Gruppenarbeit
Instructor(s):
Prof. Dr. Armin Heinzl, Tobias Maier, Luis Oberste, Felix Ott
Date(s):
Friday  (weekly) 05.09.2025 – 10.10.2025 10:15 – 13:30 SN 169 Röchling Hörsaal; Schloss Schneckenhof Nord
Description:
Die Vorlesung Wirtschaftsinformatik I vermittelt die Fundamente der Wirtschaftsinformatik als wissenschaftliche Disziplin. Im Rahmen einer Einführung werden unter anderem der Gegenstand, der Wissenschaftscharakter, die Forschungsziele, -theorien, und -methoden sowie Nachbardisziplinen und ein Ländervergleich behandelt. Im Rahmen der Grundlegung werden zentrale Inhalte wie Informationsbedarf, Informationsverhalten, Informationssystem, Informationsinfrastruktur, Benutzerverhalten, Aspekte einer Entwurfslehre und Inhalte der Evaluationsforschung vermittelt.

Bitte klicken Sie hier für weitere Informationen.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Business Informatics III: Development and Management of Information Systems (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
In order to be able to deal with these challenges, the “Development and Management of Information Systems” course is designed to introduce students to the various stages of the life cycle of an IS. Starting with the initial idea and conception of a system, the course will cover the process from development to introduction and, finally, application and value creation. In doing so, students will get to know the various entities and roles involved in IS development and management.
The primary objective of the course is to enable students to play a vital role at the intersection of technical and business issue, being able to bridge the gap between a company’s end users and IT experts. In doing so, they shall understand that IS transcend mere technological artifacts but constitute complex socio-technical phenomena.
To support students in their learning, the course will offer a basic introduction to the IS phenomenon, system types, and roles involved in development, introduction, management, and use of IS. Subsequently, each of these phases will be looked at in greater detail. For each phase, both the processes as well as at the contents of each domain will be introduced and discussed. Beyond the presentation of basic concepts, methods, and theories, the course will also provide students with opportunities to extend and practice their theoretical knowledge with interactive elements, an industry speaker, and a case study.
Recommended requirement:
Examination achievement:
Written exam (30%) (90 Minuten)
Case study write-up (70%)
Instructor(s):
Prof. Dr. Hartmut Höhle
Date(s):
Thursday  (weekly) 04.09.2025 – 04.12.2025 12:00 – 13:30 O 148 MVV Hörsaal; Schloss Ostflügel
Description:
During the last decades we witnessed a growing importance of Information Systems (IS) in the business world along with faster and faster innovation cycles. A case in point is the growing IS-related expenditure of corporations, forecasted to total EUR 2.63 trillion in 2012 – a 4.7% growth over 2011 (Gartner 2013). Ranging from the enrichment of routine working tasks (i.e., employee portals to integrate disparate applications, data, and processes (Daniel and White 2005)) to the e-enabled integration of entire business eco-systems (e.g., platform-based integration of supply chains (e.g., Kroenke 2010)), IS have become a vital backbone of businesses.
Consequently, the ability to use IS in a way supporting the overall value proposition of a corporation has become a central success determinant for many firms. Accordingly, the “Development and Management of Information Systems” course is designed to introduce students to the nature, role, and potentials of IS in corporations and enable them to serve as a meaningful interface between technology and business.
Once filling this role in a business context, the future IS professionals are likely to be facing two major trends: the increasing industrialization of IS (Brenner et al. 2007; Daberkow and Radtke 2008; Walter et al. 2007) and a shift towards service-orientation in IT organizations and processes (Hochstein et al. 2005; Roewekamp 2007). This brings about challenges such as, among others, managing the trade-off between efficient execution and effective offering or recognizing and mitigating conflicting expectations and goals among the many entities (i.e., software producers, consultants, corporate users, customers) and roles (i.e., business professionals, technical staff, corporate management) involved in an IS.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Business Informatics (Master)

Advanced Software Engineering (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
After taking the course, students will be familiar with the latest state-of-the-art techniques for specifying the externally visible properties of a software system/component  – that is, for describing a software system/component as a “black box”, and for verifying them. Methodological competence:
Participants will know how to use the expertise acquired during the course to describe the requirements that a system/component has to satisfy and to define tests to check whether a system/component fulfils these requirements. Personal competence:
With the acquired skills and know-how, students will be able to play a key role in projects involving the development of systems, components and software applications.
Recommended requirement:
Examination achievement:
Written examination, 90 minutes
Instructor(s):
Prof. Dr. Colin Atkinson
Date(s):
Friday  (weekly) 05.09.2025 – 05.12.2025 10:15 – 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Description:
The course deals with the model-based specification of software systems and components as well as their verification, validation and quality assurance. The emphasis is on view-based specification methods that use multiple views, expressed in multiple languages, to describe orthogonal aspects of software systems/components. Key examples include structural views represented using class diagrams, operational views expressed using constraint languages and behavioural views expressed using state diagrams. An important focus of the course is the use of these views to define tests and extra-functional properties.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Blockchain Security (Lecture)
DE
Course type:
Lecture
ECTS:
Course suitable for:
Master
Language of instruction:
German
Instructor(s):
Prof. Dr. Frederik Armknecht
Date(s):
Friday  (weekly) 05.09.2025 – 05.12.2025 12:00 – 13:30 A 104 Seminarraum; B 6, 23–25 Bauteil A
Data Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Registration procedure:
Please note that there is no second date for the exam.
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 13:45 – 15:15 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
1
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Higher Level Computer Vision (Lecture w/ Exercise)
EN
Course type:
Lecture w/ Exercise
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Attendance:
Live & on-campus
Instructor(s):
Prof. Dr.-Ing. Margret Keuper
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Thursday  (weekly) 04.09.2025 – 04.12.2025 13:45 – 15:15 C 013 Hörsaal; A 5, 6 Bauteil C
IE 675b Machine Learning (Lecture)
EN
Course type:
Lecture
ECTS:
9.0
Course suitable for:
Master
Language of instruction:
English
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 04.09.2025 – 04.12.2025 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Information Retrieval and Web Search (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Learning target:
Expertise:
Students will acquire knowledge of fundamental techniques of Information Retrieval and Web Search, including standard retrieval models, evaluation of information retrieval systems, text classification and clustering, as well as web search topics such as crawling and link-based algorithms.
Methodological competence:
Successful participants will be able to understand state-of-the-art methods for Information Retrieval and Web search, as well as being able to select, apply and evaluate the most appropriate techniques for a variety of different search scenarios.
Personal competence:
  • presentation skills;
  • team work skills.
Recommended requirement:
Examination achievement:
Written examination (90 minutes), written project report, oral project presentation
Instructor(s):
Prof. Dr. Simone Paolo Ponzetto, Dr. Daniel Ruffinelli
Date(s):
Wednesday  (weekly) 03.09.2025 – 03.12.2025 12:00 – 13:30 A 104 Seminarraum; B 6, 23–25 Bauteil A
Description:
Given the vastness and richness of the Web, users need high-performing, scalable and efficient methods to access its wealth of information and satisfy their information needs. As such, being able to search and effectively retrieve relevant pieces of information from large text collections is a crucial task for the majority (if practically not all) of Web applications. In this course we will explore a variety of basic and advanced techniques for text-based information retrieval and Web search. Covered topics will include:
 
  • Efficient text indexing;
  • Boolean and vector space retrieval models;
  • Evaluation of retrieval systems;
  • Probabilistic Information Retrieval;
  • Text classification and clustering;
  • Web search, crawling and link-based algorithms.

Coursework will include homework assignments, a term project and a final exam. Homework assignments are meant to introduce the students to the problems that will be covered in the final exam at the end of the course. In addition, students are expected to successfully complete a term project in teams of 2–4 people. The projects will focus on a variety of IR problems covered in class. Project deliverables include both software (i.e., code and documentation) and a short report explaining the work performed and its evaluation.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
IS 613 Applied Project in Design Thinking and Lean Software Development (Lecture w/ Exercise)
EN
Course type:
Lecture w/ Exercise
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
On-campus and online, live
Instructor(s):
Philipp Hoffmann
Description:
Please find a detailed course description via the following link:
Module Catalog MMM | Universität Mannheim (uni-mannheim.de)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
IS 614 Corporate Knowledge Management (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Instructor(s):
Prof. Dr. Armin Heinzl
Date(s):
Thursday  (weekly) 11.09.2025 – 04.12.2025 10:15 – 11:45 O 151 Hans Luik Hörsaal; Schloss Ostflügel
Description:
Please find a detailed course description via the following link:
Module Catalog MMM | Universität Mannheim (uni-mannheim.de)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
IS 615 Design Thinking and Lean Development in Enterprise Software Development (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
On-campus and online, live
Instructor(s):
Philipp Hoffmann
Description:
Please find a detailed course description via the following link:
Module Catalog MMM | Universität Mannheim (uni-mannheim.de)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Text Analytics (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Instructor(s):
Prof. Dr. Markus Strohmaier
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 13:45 – 15:15 O 151 Hans Luik Hörsaal; Schloss Ostflügel
Description:
Please find a detailed course description via the following link:
Module Catalog MMM | Universität Mannheim (uni-mannheim.de)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
IT-Security (Seminar)
EN
Course type:
Seminar
ECTS:
4.0
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Frederik Armknecht
Date(s):
Friday  (weekly) 05.09.2025 – 05.12.2025 10:15 – 11:45 A 302 Seminarraum; B 6, 23–25 Bauteil A
Cryptographie II (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Learning target:
Fachkompetenz:
Die Studierenden können Mithilfe aktueller Techniken und Theorien der modernen Kryptographie die Sicherheit von kryptographischen Verfahren einschätzen bzw. Sicherheitsaussagen entsprechend zu beurteilen. Weiterhin sind sie in der Lage, Sicherheitsziele zu erkennen und entsprechende Techniken einzusetzen, die in Kryptographie I nicht behandelt werden konnten.
Methodenkompetenz:
Den Studierenden sind in der Lage, geeignete Methoden zu Sicherheitsanalyse von kryptographischen Verfahren auszuwählen und einzusetzen. Dazu gehören bspw. die Wahl der passenden Sicherheitsmodelle, das Beweisen der Sicherheit aufgrund klar präzisierter Annahmen und die Analyse gegebener Verfahren. Insbesondere besitzen die Studierenden die Fähigkeit, die Sicherheitsargumente für existierende Verfahren zu verstehen und einzuschätzen und auf neue zu übertragen. Weiterhin können sie Techniken und Protokolle einsetzen, um Sicherheitsziele zu erreichen, die mit den in Kryptographie I besprochenen Verfahren noch nicht möglich waren.
Personale Kompetenz:
Das analytische, konzentrierte und präzise Denken der Studierenden wird geschult. Durch die eigenständige Behandlung von Anwendungen, z. B. im Rahmen der Übungsaufgaben, wird ihr Abstraktionsvermögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert.
Recommended requirement:
Examination achievement:
Schriftliche Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten)
Instructor(s):
Prof. Dr. Frederik Armknecht
Date(s):
Friday  (weekly) 05.09.2025 – 05.12.2025 08:30 – 10:00 A 302 Seminarraum; B 6, 23–25 Bauteil A
Description:
In der Vorlesung erfolgt eine kurze Zusammenstellung der wichtigsten kryptographischen Grundalgorithmen und der für die Vorlesung relevanten mathematischen, algorithmischen und informations- und komplexitätstheoretischen Grundlagen. Diese werden einerseits vertieft und andererseits erweitert. Behandelte Themen sind beispielsweise
  • moderne Techniken der Kryptanalyse und daraus ableitbare Designkriterien für kryptographische Verfahren
  • kryptographische Protokolle
  • Sicherheitsbeweise
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Large-Scale Data Management (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
4
Learning target:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Recommended requirement:
Examination achievement:
Written examination, exercises
90 minutes
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its ecosystem
• NoSQL
• Stream processing
• Graph databases
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Master Seminar Computer Vision (Seminar)
EN
Course type:
Seminar
ECTS:
4.0
Course suitable for:
Master
Language of instruction:
English
Attendance:
Live & on-campus
Instructor(s):
Prof. Dr.-Ing. Margret Keuper
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 17:15 – 18:45 A 104 Seminarraum; B 6, 23–25 Bauteil A
Model Driven Development (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will be familiar with the accepted best practices and technologies used in mainstream model-driven development as well as state-of-the-art modeling technologies emerging from research institutions.
Methodological competence:
Students will know how to apply modeling technologies in real-world projects.
Personal competence:
Students will have the capability to analyse, understand and model complex systems.
Recommended requirement:
Examination achievement:
Written examination (90 minutes)
Instructor(s):
Prof. Dr. Colin Atkinson
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 13:45 – 15:15 C 014 Hörsaal; A 5, 6 Bauteil C
Description:
The course focuses on the principles, practices and tools involved in advanced model-driven development. This includes established modelling standard languages (e. g. UML, ATL, OCL . . . ) and modelling infrastructures (e. g. MOF, EMF, etc. ) as well as leading edge, state-of-the-art modelling technologies (e. g. LML, PLM . . . ). Key topics addressed include –
  • Multi-level modeling
  • Meta-modeling
  • Ontology engineering versus model engineering
  • Model transformations
  • Domain specific language definition and use
  • Model creation and evolution best practices
  • Model-driven software development
  • Model checking and ontology validation
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Web Data Integration (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Learning target:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Instructor(s):
Prof. Dr. Christian Bizer, Ralph Peeters
Date(s):
Thursday  (weekly) 04.09.2025 – 04.12.2025 13:45 – 15:15 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Description:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Translation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Web Data Integration (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Learning target:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Instructor(s):
Prof. Dr. Christian Bizer, Ralph Peeters
Date(s):
Wednesday  (weekly) 03.09.2025 – 03.12.2025 15:30 – 17:00 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Description:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Translation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Business Mathematics (Bachelor)

MAA 510 Introduction of partial differential equations (Lecture)
EN
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Literature:
 Script (online)
 L.C. Evans: Partial Differential Equations
 F. John: Partial Differential Equations
Examination achievement:
oral examination, 30 minutes
Instructor(s):
Prof. Dr. Martin Schmidt
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 17:15 – 18:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 04.09.2025 – 04.12.2025 17:15 – 18:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
  • Basic notions of partial differential equations
  • method of characteristics
  • Laplace equations
  • heat equations
  • wave equation
MAB 401 Algebra (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
• Sicherer Umgang mit den algebraischen Grundstrukturen, Gruppen, Ringen, Körpern (BK1).
• Würdigung des Aufbaus dieser Grundstrukturen und wichtiger Beweise (BK1).
Methodenkompetenz:
• Gruppen als ordnendes Mittel für Symmetrien verstehen (BK1, BF2).
• Körpertheorie als modernes Werkzeug zur Lösung von mathematischen Fragen der Antike würdigen (BK1, BF2).
Personale Kompetenz:
• Strukturen und Symmetrien erkennen und präzisieren (BF1, BO2).
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
Dr. Thomas Reichelt
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 12:00 – 13:30 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Friday  (weekly) 05.09.2025 – 05.12.2025 12:00 – 13:30 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Description:
• Gruppenbegriff, Eigenschaften und Anwendungen zyklischer und abelscher Gruppen, Beispiele, auflösbare Gruppen.
• Ringe, Ideale, Euklidische Ringe, Hauptidealringe, ZPW-Ringe, Quotientenringe.
• Körper, Körpererweiterungen, Galois-Theorie.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAC 404 Optimization (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Verständnis der wesentlichen Konzepte und Lösungsverfahren der Linearen Optimierung  (BF1, BK1)
• Computerunterstütze Umsetzung anwendungsbezogener Fragestellungen  (BK2, BK3, BO1)
• Querverbindungen zu anderen mathematischen Gebieten identifizierten Klassifikation und Interpretation numerischer Probleme (BK1, BO2)
Methodenkompetenz:
• Mathematische Modellierung eines Problems (BF3, BO3)
• Konkrete Problemlösungsstrategien und deren Interpretation (BF1, BF2)
Personale Kompetenz:
• Teamarbeit (BO1, BF4, BF5)
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
Prof. Ph. D. Mathias Staudigl
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 13:45 – 15:15 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Tuesday  (weekly) 02.09.2025 – 02.12.2025 10:15 – 11:45 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Description:
• Lineare Programmierung: Simplex Verfahren, Dualität, innere Punkte Verfahren
• Graphentheorie: minimal spannende Bäume, kürzeste Wege, maximale Flüsse
• Ganzzahlige Programmierung: Branch and Bound Verfahren, Schnittebenenverfahren, Heuristiken
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAC 403 Mathematical Finance (Lecture)
EN
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
• Grundbegriffe der Modellierung in der Finanzmathematik  (BK2, BK4)
• Grundlagen der Martingaltheorie und des Itô-Kalküls (BK1, BK4)
• Bewertung und Absicherung riskanter Positionen in allgemeinen zeitdiskreten Marktmodellen, im  Binomialmodell sowie in einfachen vollständigen Marktmodellen in stetiger Zeit wie etwa dem Bachelier oder dem Black-Scholes-Modell (BK1, BK2, BK3)
Methodenkompetenz:
• Grundprinzipien des dynamischen Risikomanagement (BF2, BF3, BO1, BO3)
• Beherrschung der Terminologie der Finanzmathematik wie z. B. den “Greeks” (BF4, BF5, BO1)
• Erkennen, in welchen Situationen welche Bewertungsmethoden für Risiken sinnvoll sein können (BF2, BF3, BF4, BF5)
Personale Kompetenz:
• Teamarbeit (BF4)
Recommended requirement:
Examination achievement:
Je nach Teilnehmerzahl schriftliche Klausur oder mündliche Prüfung (wird zu Beginn der Vorlesung bekannt gegeben)
Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Instructor(s):
Prof. Dr. David Johannes Prömel
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
Wednesday  (weekly) 03.09.2025 – 03.12.2025 10:15 – 11:45 C 012 Seminarraum; A 5, 6 Bauteil C
Description:
• Mathematische Grundlagen der zeitlich diskreten Finanzmathematik wie bedingte Erwartungen, Martingale und elementare Funktionalanalysis
• Modellierung von Finanzmärkten in diskreter Zeit
• Arbitragetheorie in diskreter Zeit; insb. Fundamentalsatz der arbitragefreien Bewertung (FTAP), sowie Bewertung und Absicherung von europäischen und Optionen in vollständigen und unvollständigen Marktmodellen
• Binomialmodell von Cox, Ross und Rubinstein
• Amerikanische Optionen und optimales Stoppen in diskreter Zeit
• Mathematische Grundlagen der Finanzmathematik in stetiger Zeit wie Stieltjes-Integration, pfadweiser Itô-Kalkül, elementare partielle Differentialgleichungen
• Modellierung von Finanzmärkten in stetiger Zeit
• Absicherung von Optionen im Bachelier-Modell
• Black-Scholes-Formel
• Variance-swaps, VIX, CPPI
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAT 301 Analysis I (Lecture)
DE
Course type:
Lecture
ECTS:
10.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Grundbegriffe der reellen Analysis (BF1, BK1)
• Konvergenz von Folgen und Reihen (BK1)
• Stetigkeit von Funktionen in einer Variablen (BK1)
• Differenzierbarkeit von Funktionen in einer Variablen  (BK1)
• Riemanintegral von Funktionen in einer Variablen (BK1)
Methodenkompetenz:
• mathematische Beweisführung (BF1, BO2)
• Hantieren mit Gleichungen und Ungleichungen (BF1, BO2)
• Berechnen von Grenzwerten (BF1,BO3)
• Kurvendiskussion (BF2, BO3)
• Berechnen von unbestimmten und bestimmten Integralen (BO2,BO3)
Personale Kompetenz:
• Teamarbeit (BF4)
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Martin Schmidt
Date(s):
Wednesday  (weekly) 03.09.2025 – 03.12.2025 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Friday  (weekly) 05.09.2025 – 05.12.2025 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
• Mengen und Abbildungen
• reelle Zahlen
• Zahlenfolgen und Reihen
• Funktionen in einer reellen Variablen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAT 303 Linear Algebra I (Lecture)
DE
Course type:
Lecture
ECTS:
9.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
• Kenntnis der wesentlichen Ideen und Methoden der Linearen Algebra, Kenntnis der wesentlichen mathematischen Beweismethoden (BK1).
Methodenkompetenz:
• Grundstrukturen der Linearen Algebra als Grundstrukturen der Mathematik würdigen und sicher mit ihnen umgehen (BK1).
• Lineare Gleichungssysteme in Anwendungen erkennen und professionell lösen (BF2).
Personale Kompetenz:
• Strukturiertes Denken (BO2).
• Teamarbeit (BF4).
• Kommunikationsfähigkeit (BO1).
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Claus Hertling
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 04.09.2025 – 04.12.2025 08:30 – 10:00 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
• Gruppen, Ringe, Körper, Vektorräume, Lineare Abbildungen, Matrizen, Lineare Gleichungssysteme, Determinanten,  Eigenwerte und Diagonalisierung,  Euklidische Vektorräume.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAT 306 Numerical Mathematics (Lecture)
DE
Course type:
Lecture
ECTS:
9.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Verständnis der Grundbegriffe und grundlegenden Methoden der Numerischen Mathematik  (BF1, BK1)
• Algorithmisches Denken und Implementierung grundlegender Verfahren zur Bestimmung von Näherungslösungen (BK3)
• Klassifikation und Interpretation numerischer Probleme (BK1, BO3)
Methodenkompetenz:
• Mathematische Modellierung eines (Anwendungs-)Problems (BF3, BO3)
• Konkrete Problemlösungsstrategien und deren Interpretation (BF1, BF2)
Personale Kompetenz:
• Teamarbeit (BO1,BF4)
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Simone Göttlich
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 12:00 – 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Tuesday  (weekly) 02.09.2025 – 02.12.2025 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
• Numerik linearer Gleichungssysteme
• Störungstheorie und Fehleranalyse
• Lineare Ausgleichsrechnung
• Eigenwertprobleme
• Nichtlineare Gleichungssysteme: Fixpunktiterationen, insbesondere Newton-Verfahren
• Interpolation und Splines
• Numerische Integration
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Stochastik 1 (Lecture)
DE
Course type:
Lecture
ECTS:
9.0
Course suitable for:
Bachelor
Language of instruction:
German
Attendance:
Online, recorded
Instructor(s):
Prof. Dr. Leif Döring
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 13:45 – 15:15 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 04.09.2025 – 04.12.2025 12:00 – 13:30 B 144 Hörsaal; A 5, 6 Bauteil B

Business Mathematics (Master)

MAA 504 Partial Differential Equations (Lecture)
EN
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Learning target:
Fachkompetenz:
Vertrautheit mit den Grundbegriffen partieller Differenzialgleichungen (MK1)
Vertrautheit mit Distributionen, Hölderräumen und Sobolevräumen (MK1)
Vertrautheit mit Sobolevungleichungen (MK1)
Verständnis des Konzepts der schwachen Lösung (MK1, MO2)
Verständnis des Randverhaltens von Lösungen (MK1, MO2)
Methodenkompetenz:
Fähigkeit die Existenz von Lösungen zu untersuchen (MO2)
Fähigkeit die Eindeutigkeit von Lösungen zu untersuchen (MO2)
Fähigkeit die Regularität von Lösungen zu untersuchen (MO2)
Personale Kompetenz:
Vertieftes Verständnis für komplexe Argumentationen in der elliptischen Theorie (MO3)
Recommended requirement:
Examination achievement:
mündliche Prüfung
Instructor(s):
Dr. Ross Ogilvie
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 17:15 – 18:45 C 012 Seminarraum; A 5, 6 Bauteil C
Thursday  (weekly) 04.09.2025 – 04.12.2025 17:15 – 18:45 C 012 Seminarraum; A 5, 6 Bauteil C
Description:
Elliptische Differenzialgleichungen
Funktionenräume
Randwertproblem, Dirichletproblem
Apriori Abschätzungen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAA 510 Introduction of partial differential equations (Lecture)
EN
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Literature:
 Script (online)
 L.C. Evans: Partial Differential Equations
 F. John: Partial Differential Equations
Examination achievement:
oral examination, 30 minutes
Instructor(s):
Prof. Dr. Martin Schmidt
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 17:15 – 18:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 04.09.2025 – 04.12.2025 17:15 – 18:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
  • Basic notions of partial differential equations
  • method of characteristics
  • Laplace equations
  • heat equations
  • wave equation
MAA 519 Stochastic Calculus (Lecture)
Course type:
Lecture
ECTS:
5.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
Attendance:
Online, recorded
Instructor(s):
Prof. Dr. David Johannes Prömel
Description:
Brownian motion and martingales in continuous time, Stochastic integration and Ito formula, solution theory for stochastic differential equations (strong solutions, linear SDEs), change of measure (Girsanov theorem), martingale representation theorem
MAC 509 Numerical Methods for Ordinary Differential Equations (Lecture)
EN
Course type:
Lecture
ECTS:
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Simone Göttlich
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 10:15 – 11:45 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Thursday  (weekly) 04.09.2025 – 04.12.2025 12:00 – 13:30 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Quasi Monte Carlo Methods (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
German
Credit hours 1:
2
Attendance:
Live & on-campus
Instructor(s):
Dr. Peter Parczewski
Date(s):
Wednesday  (weekly) 03.09.2025 – 03.12.2025 13:45 – 15:15 A 303 Seminarraum; B 6, 23–25 Bauteil A
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Mannheim Master in Data Science

Master Seminar Computer Vision (Seminar)
EN
Course type:
Seminar
ECTS:
4.0
Course suitable for:
Master
Language of instruction:
English
Attendance:
Live & on-campus
Instructor(s):
Prof. Dr.-Ing. Margret Keuper
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 17:15 – 18:45 A 104 Seminarraum; B 6, 23–25 Bauteil A
Reinforcement Learning (Lecture w/ Exercise)
EN
Course type:
Lecture w/ Exercise
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Attendance:
Live & on-campus
Instructor(s):
Prof. Dr.-Ing. Margret Keuper
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 10:15 – 11:45 C 014 Hörsaal; A 5, 6 Bauteil C
Monday  (weekly) 01.09.2025 – 01.12.2025 12:00 – 13:30 C 014 Hörsaal; A 5, 6 Bauteil C
Responsible AI: Conceptual Foundations, Methods and Applications (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Instructor(s):
Prof. Dr. Philipp Kellmeyer
Date(s):
Monday  (weekly) 08.09.2025 – 01.12.2025 10:15 – 11:45 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Seminar and Lab on Machine Learning and Causal Inference (Seminar)
EN
Course type:
Seminar
ECTS:
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Attendance:
Live & on-campus
Instructor(s):
Prof. Ph. D. Marc Ratkovic
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 13:45 – 15:15 A 301 Seminarraum; B 6, 23–25 Bauteil A
Thursday  (weekly) 04.09.2025 – 04.12.2025 13:45 – 15:15 A 301 Seminarraum; B 6, 23–25 Bauteil A
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Statistics for Data Scientists (Lecture)
EN
Course type:
Lecture
ECTS:
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Attendance:
Live & on-campus
Instructor(s):
Prof. Ph. D. Marc Ratkovic
Date(s):
Tuesday  (weekly) 02.09.2025 – 02.12.2025 10:15 – 11:45 D 002 Seminarraum 1; B 6, 27–29 Bauteil D
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
VL Sampling and Data (Lecture)
EN
Course type:
Lecture
ECTS:
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Instructor(s):
Prof. Ph. D. Marc Ratkovic
Date(s):
Monday  (weekly) 01.09.2025 – 01.12.2025 08:30 – 10:00 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Contact School of Business Informatics and Mathematics

Juliane Roth, M.A.

Juliane Roth, M.A. (she/her)

Departmental Exchange Coordinator, Digitization
University of Mannheim
School of Business Informatics and Mathematics
B 6, 26
Gebäudeteil B – Room B 1.05
68159 Mannheim
Phone: +49 621 181-2340
Fax: +49 621 181-2423
E-mail: juliane.rothmail-uni-mannheim.de
Consultation hour(s):
by appointment via email