Wirtschafts­mathematik und Wirtschafts­informatik

Information on your course choice

Please note that you have to take the majority of classes at the School of Business Informatics and Mathematics. In most cases you do not need to register for courses, please just attend the first lecture. In case you want to take courses outside from our school you can choose from the university wide electives list.
Good to know: undergraduate students are allowed to take graduate’s level courses at the School of Business Informatics and Mathematics. Partially, there are no requirements for participation in a Master’s course.

Suchfilter

Wirtschafts­informatik (Bachelor)

Algorithmen und Datenstrukturen (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
SWS 1:
6
Teilnahme:
Lernziel:
Fach­kompetenz:
Die Studierenden kennen effiziente Algorithmen und effektive Datenstrukturen für grundlegende Probleme der Informatik und können diese  anwenden und in Computer­programme umsetzen. Sie beherrschen weiterhin grundlegende Techniken des Entwurfs von Algorithmen und Datenstrukturen, sowie der Korrektheits- und Laufzeitanalyse von Algorithmen
Methoden­kompetenz:
Die Studierenden können anwendungs­relevanten Berechnungs­problemen effiziente Algorithmen zuzuordnen bzw. diese  entwickeln und
mittels dieser lösen.
Personale Kompetenz:
Die Studierenden können Berechnungs­probleme in Anwendungs­zusammenhängen identifizieren, sie formal spezifizieren und damit einer rechentechnischen Lösung zuführen. Sie können auf höherem Niveau abstrahieren und mit formalen Modellierungs­techniken arbeiten.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Schriftliche Klausur (90 Minuten)
Lektor(en):
Prof. Dr. Matthias Krause, Linda Scheu-Hachtel
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 10:15 – 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 17:15 – 18:45 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
  • Grundtechniken des Algorithmenentwurfs sowie der Laufzeitanalyse (Divide and Conquer, Greedyheuristiken, Dynamic Programming,…)
  • Grundtechniken des Beweisens der Korrektheit von Algorithmen
  • Sortieralgorithmen
  • Hashing und hashing­basierte Algorithmen
  • Advanced Data Structures
  • Algorithmen für Suchbäume
  • Graphalgorithmen (Tiefensuche, Breitensuche, Minimum Spanning Trees, Kürzeste-Wege-Algorithmen)
  • Ausgewählte weitere Algorithmen (z.B. Pattern Matching, Automatenminimierung…)
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
CS 560 Large-Scale Data Management (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination, exercises
90 minutes
Lektor(en):
Prof. Dr. Rainer Gemulla
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its eco­system
• NoSQL
• Stream processing
• Graph databases
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Datenbank­systeme I (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
Verständnis der Grundlagen der Daten­modellierung bzw. des Datenbankentwurfs und der Funktions­weise von relationalen Datenbank­management­systemen, insbesondere Anfragebearbeitung und Trans­aktions­verwaltung
Methoden­kompetenz:
Abstraktion, Modellierung, Aufwandsabschätzung für Anfragen
Personale Kompetenz:
Verständnis der Rolle moderner Datenhaltung in einem Unter­nehmen
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur (90 Minuten)
Lektor(en):
Prof. Dr. Guido Moerkotte
Termin(e):
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Montag  (wöchentlich) 09.09.2024 – 02.12.2024 12:00 – 13:30 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
Datenbankentwurf, Normalisierung, Anfragebearbeitung, Trans­aktions­verwaltung
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Decision Support (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
SWS 1:
1
Teilnahme:
Präsenz live
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), homework assignments, case studies
Lektor(en):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Decision Support (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz live
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), homework assignments, case studies
Lektor(en):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Decision Support (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz live
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), homework assignments, case studies
Lektor(en):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 15:30 – 17:00 C 012 Seminarraum; A 5, 6 Bauteil C
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Formale Grundlagen der Informatik (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Lernziel:
Fach­kompetenz:
Die Studierenden beherrschen grundlegende für die Informatik rele-vanten Konzepte, Begriffsbildungen und wissenschaft­lichen Arbeits-techniken aus Mathematik und Logik. Sie kennen weiterhin eine erste Auswahl an wichtigen Datenstrukturen und  effizienten Algorithmen für grundlegende Probleme.
Methoden­kompetenz:
Die Studierenden besitzen die Fähigkeit, informal gegebene Sachver-halte formal zu modellieren und die entstehenden formalen Struktu-ren bzgl. grundlegender Eigenschaften zu klassifizieren. Sie können weiterhin  auf einem für Informatiker adäquaten Niveau gegebene Aussagen mathematisch  beweisen.
Personale Kompetenz:
Die Studierenden besitzen ein Grundverständnis der för die Informa-tik wichtigen formalen Strukturen, Modelle und Arbeits­techniken. Sie können auf höherem Niveau abstrakt denken und formal modellieren.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Schriftliche Klausur (90 Minuten)
Lektor(en):
Prof. Dr. Matthias Krause, Linda Scheu-Hachtel
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 13:45 – 15:15 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
  • Grundlagen Aussagenlogik (Folgern, Beweisen)
  • Mengen, Relationen, Abbildungen
  • Grundlagen der Kombinatorik (Abzählen von endlichen Mengen, Abzählbarkeit)
  • Einführung Graphentheorie
  • Algebraische Strukturen (Halb­gruppen, Gruppen, Homorphismen, Faktorstrukturen)
  • Grundlegende Berechnungs­modelle/Endliche Automaten
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
IS 405 Integrated Information Systems (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Registrierungs­informationen:
This course does not have limited capacity. Registration via Portal2 will be possible from August 15, 2024.
Please note that this lecture is accompanied by an exercise class, you can register for it via Portal2.
Lernziel:
After attending the lecture, exercises and tutorials students are able to:
  • model complex business processes based on popular modelling techniques
  • discuss the requirements, characteristics and effects of integrated information systems in industrial companies, including complex process interdependencies
  • complete basic tasks from different functional areas in a wide-spread integrated information system.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Klausur (90 Minuten)
Lektor(en):
Prof. Dr. Armin Heinzl, Dr. André Halckenhäußer
Termin(e):
⚠ Freitag  (wöchentlich) 18.10.2024 – 06.12.2024 10:15 – 13:30 SN 169 Röchling Hörsaal; Schloss Schneckenhof Nord
Achtung: Einzeltermine in den mit markierten Terminreihen haben sich geändert. Bitte informieren Sie sich im Portal über die Details.
Beschreibung:
This course first outlines the basics of data and business process modelling based on wide-spread approaches such as entity relations­hip diagrams, event-driven process chains (EPC), and business process model and notation (BPMN). The remainder of the course then focuses on the use and purpose of integrated information systems across different functional areas in industrial companies. Finally, basics of management support systems such as business intelligence systems are addressed.
 
  • Business Process Modelling
  • Application Systems in
    • Research and Development
    • Marketing and Sales
    • Procurement and Warehousing
    • Production
    • Shipping and Customer Service
    • Finance, Accounting, HR
  • Planning and Control Systems
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Künstliche Intelligenz (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
Ziele und Grundlagen der Künstlichen Intelligenz. Such­verfahren als universelle Problemlösungs­verfahren. Problemkomplexität und Heuristische Lösungen. Eigenschaften und Zusammenhang zwischen unter­schiedlichen Such­verfahren.
Methoden­kompetenz:
Beschreibung konkreter Aufgaben als Such-, Constraint- oder Planungs­problem. Implementierung unter­schiedlicher Such­verfahren und Heuristiken.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Erfolgreiche Teilnahme am Übungs­betrieb
schriftliche Klausur (90 Minuten)
Lektor(en):
Dr. Christian Meilicke
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 13:45 – 15:15 A 203 Unter­richtsraum; B 6, 23–25 Bauteil A
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 12:00 – 13:30 A 203 Unter­richtsraum; B 6, 23–25 Bauteil A
Beschreibung:
  • Problemeigenschaften und Problemtypen
  • Problemlösen als Suche, Anwendung im Bereich Computer­spiele
  • Constraint­probleme und deren Lösung
  • Logische Constraints
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Praktische Informatik I (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
deutsch
SWS 1:
6
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
Die Studierenden können selbständig Algorithmen zu vorgegebenen Problemen entwerfen und in Java, das im parallel laufenden Pro-grammierkurs I unter­richtet wird, objekt­orientiert programmieren. Methoden­kompetenz:
Algorithmenentwurf, Bewertung von vorgegeben Algorithmen Personale Kompetenz:
Kreativität beim Entwurf von Algorithmen, Team­fähigkeit
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Studien­beginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungs­betrieb
schriftliche Klausur (90 Minuten)

Studien­beginn vor HWS 2011:
schriftliche Klausur (90 Minuten)

Lektor(en):
Prof. Dr.-Ing. Roland Leißa
Termin(e):
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 15:30 – 17:00 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Freitag  (wöchentlich) 06.09.2024 – 06.12.2024 15:30 – 17:00 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
Vom Problem zum Algorithmus, vom Algorithmus zum Programm
  • Entwurf von Algorithmen: schrittweise Verfeinerung, Modularität, Objekt­orientierung (Klassen­hierarchien, Vererbung), Rekursion
  • Die objekt­orientierte Programmiersprache Java
  • Einfache Datenstrukturen (verkettete Liste, Binärbaum, B-Baum)
  • Modellierung mit UML: Klassendiagramme, Aktivitätsdiagramme, Zustandsdiagramme
  • Einführung in die Theorie der Algorithmen: Berechenbarkeit, Komplexität (O-Kalkül), Testen und Verifikation von Algorithmen und Programmen
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Programmier­praktikum I (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
5.0
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
SWS 1:
2
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
  • Gründliche Kenntnis der Basiskonzepte der Programmiersprache Java
  • Verständnis des Konzepts der Objekt­orientierung
  • Kenntnisse der algorithmischen Prinzipien  Iteration und Rekursion
  • Basiswissen über das Arbeiten unter einem Linux-Betriebs­system

Methoden­kompetenz:

  • Fähigkeit, Algorithmen zu entwerfen
  • Fähigkeit, komplexe Algorithmen in Java ohne Einsatz importierter Methoden zu programmieren
  • Fähigkeit, rekursiv zu programmieren

Personale Kompetenz:

  • Eigen­verantwortliches Arbeiten
  • Team­fähigkeit
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Programmiertestate, Programmier­projekte, Programming Competence Test (180 Minuten)
Lektor(en):
Dr. Ursula Rost
Termin(e):
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 12:00 – 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
Im Programmier­praktikum I werden grundlegende Kenntnisse der objekt­orientierten Programmierung auf Basis der Sprache Java vermittelt.
Die Studierenden werden von dieser Sprache vor allem folgende Grundmerkmale und Konzepte kennenlernen:
 
  • Basiskonzepte der Programmierung: einfache Datentypen, Variablen, Operatoren, Anweisungen, Kontrollstrukturen
  • Zusammengesetzte Datentypen (Felder)
  • Das Konzept der objekt­orientierten Programmierung
  • Klassen (Attribute, Methoden, Konstruktoren)
  • Vererbung
  • Pakete, abstrakte Klassen und Interfaces
  • Java API und wichtige Hilfsklassen
  • Ausnahmebehandlung: Exceptions
  • Programmierung Grafischer Oberflächen mit Swing

Die Programmierausbildung erfolgt auf der Basis des Betriebs­systems Linux. Hierzu werden ebenfalls Grund­kenntnisse vermittelt, die es ermöglichen, einfache Java-Programme zu entwickeln. Im Laufe des Kurses wird darüber hinaus eine einfache Entwicklungs­umgebung eingeführt.
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Wirtschafts­informatik I: Einführung und Grundlagen (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
SWS 1:
2
Registrierungs­informationen:
This course does not have limited capacity. Registration via Portal2 will be possible from August 15, 2024.
Lernziel:
Anhand der Vorlesung sollen Sie erlernen, dass Wirtschafts­informatik mehr als die Nutzung von Informations­technik ist. Die Inhalte werden Sie im weiteren Verlauf Ihres Studiums sowie bei der Verwertung des erlernten Wissens in ihrer Bachelor­arbeit nutzenbringend verwerten können.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
80% Schriftliche Klausur (90 Minuten)
20% Gruppen­arbeit
Lektor(en):
Prof. Dr. Armin Heinzl, Tobias Maier
Termin(e):
Freitag  (wöchentlich) 06.09.2024 – 11.10.2024 10:15 – 13:30 SN 169 Röchling Hörsaal; Schloss Schneckenhof Nord
Beschreibung:
Die Vorlesung Wirtschafts­informatik I vermittelt die Fundamente der Wirtschafts­informatik als wissenschaft­liche Disziplin. Im Rahmen einer Einführung werden unter anderem der Gegenstand, der Wissenschafts­charakter, die Forschungs­ziele, -theorien, und -methoden sowie Nachbardisziplinen und ein Länder­vergleich behandelt. Im Rahmen der Grundlegung werden zentrale Inhalte wie Informations­bedarf, Informations­verhalten, Informations­system, Informations­infrastruktur, Benutzer­verhalten, Aspekte einer Entwurfslehre und Inhalte der Evaluations­forschung vermittelt.

Bitte klicken Sie hier für weitere Informationen.
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Wirtschafts­informatik III: Development and Management of Information Systems (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz live
Registrierungs­informationen:
This course does not have limited capacity. Registration via Portal2 will be possible from August 15, 2024.
Lernziel:
In order to be able to deal with these challenges, the “Development and Management of Information Systems” course is designed to introduce students to the various stages of the life cycle of an IS. Starting with the initial idea and conception of a system, the course will cover the process from development to introduction and, finally, application and value creation. In doing so, students will get to know the various entities and roles involved in IS development and management.
The primary objective of the course is to enable students to play a vital role at the intersection of technical and business issue, being able to bridge the gap between a company’s end users and IT experts. In doing so, they shall understand that IS trans­cend mere technological artifacts but constitute complex socio-technical phenomena.
To support students in their learning, the course will offer a basic introduction to the IS phenomenon, system types, and roles involved in development, introduction, management, and use of IS. Subsequently, each of these phases will be looked at in greater detail. For each phase, both the processes as well as at the contents of each domain will be introduced and discussed. Beyond the presentation of basic concepts, methods, and theories, the course will also provide students with opportunities to extend and practice their theoretical knowledge with interactive elements, an industry speaker, and a case study.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written exam (30%) (90 Minuten)
Case study write-up (70%)
Lektor(en):
Prof. Dr. Hartmut Höhle, Jan Schilpp
Termin(e):
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 12:00 – 13:30 SN 169 Röchling Hörsaal; Schloss Schneckenhof Nord
Beschreibung:
During the last decades we witnessed a growing importance of Information Systems (IS) in the business world along with faster and faster innovation cycles. A case in point is the growing IS-related expenditure of corporations, forecasted to total EUR 2.63 trillion in 2012 – a 4.7% growth over 2011 (Gartner 2013). Ranging from the enrichment of routine working tasks (i.e., employee portals to integrate disparate applications, data, and processes (Daniel and White 2005)) to the e-enabled integration of entire business eco-systems (e.g., platform-based integration of supply chains (e.g., Kroenke 2010)), IS have become a vital backbone of businesses.
Consequently, the ability to use IS in a way supporting the overall value proposition of a corporation has become a central success determinant for many firms. Accordingly, the “Development and Management of Information Systems” course is designed to introduce students to the nature, role, and potentials of IS in corporations and enable them to serve as a meaningful interface between technology and business.
Once filling this role in a business context, the future IS professionals are likely to be facing two major trends: the increasing industrialization of IS (Brenner et al. 2007; Daberkow and Radtke 2008; Walter et al. 2007) and a shift towards service-orientation in IT organizations and processes (Hochstein et al. 2005; Roewekamp 2007). This brings about challenges such as, among others, managing the trade-off between efficient execution and effective offering or recognizing and mitigating conflicting expectations and goals among the many entities (i.e., software producers, consultants, corporate users, customers) and roles (i.e., business professionals, technical staff, corporate management) involved in an IS.
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.

Wirtschafts­informatik (Master)

Advanced Software Engineering (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz live
Lernziel:
Expertise:
After taking the course, students will be familiar with the latest state-of-the-art techniques for specifying the externally visible properties of a software system/component  – that is, for describing a software system/component as a “black box”, and for verifying them. Methodological competence:
Participants will know how to use the expertise acquired during the course to describe the requirements that a system/component has to satisfy and to define tests to check whether a system/component fulfils these requirements. Personal competence:
With the acquired skills and know-how, students will be able to play a key role in projects involving the development of systems, components and software applications.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination, 90 minutes
Lektor(en):
Prof. Dr. Colin Atkinson
Termin(e):
Freitag  (wöchentlich) 06.09.2024 – 06.12.2024 10:15 – 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
The course deals with the model-based specification of software systems and components as well as their verification, validation and quality assurance. The emphasis is on view-based specification methods that use multiple views, expressed in multiple languages, to describe orthogonal aspects of software systems/components. Key examples include structural views represented using class diagrams, operational views expressed using constraint languages and behavioural views expressed using state diagrams. An important focus of the course is the use of these views to define tests and extra-functional properties.
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Blockchain Security (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
Kurs geeignet für:
Master
Kurssprache:
deutsch
Lektor(en):
Prof. Dr. Frederik Armknecht
Termin(e):
Freitag  (wöchentlich) 06.09.2024 – 06.12.2024 12:00 – 13:30 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
CS 560 Large-Scale Data Management (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination, exercises
90 minutes
Lektor(en):
Prof. Dr. Rainer Gemulla
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its eco­system
• NoSQL
• Stream processing
• Graph databases
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Data Mining (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz live
Registrierungs­informationen:
Please note that there is no second date for the exam.
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), project report, oral project presentation
Lektor(en):
Prof. Dr. Heiko Paulheim
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 13:45 – 15:15 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Decision Support (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
SWS 1:
1
Teilnahme:
Präsenz live
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), homework assignments, case studies
Lektor(en):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Decision Support (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz live
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), homework assignments, case studies
Lektor(en):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Decision Support (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz live
Lernziel:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), homework assignments, case studies
Lektor(en):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 15:30 – 17:00 C 012 Seminarraum; A 5, 6 Bauteil C
Beschreibung:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Higher Level Computer Vision (Vorlesung mit Übung)
EN
Kurstyp:
Vorlesung mit Übung
ECTS:
6.0 (Modul/e)
Kurs geeignet für:
Master
Kurssprache:
englisch
Teilnahme:
Präsenz live
Lektor(en):
Prof. Dr.-Ing. Margret Keuper
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 12:00 – 13:30 A 203 Unter­richtsraum; B 6, 23–25 Bauteil A
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
IE 675b Machine Learning (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
9.0
Kurs geeignet für:
Master
Kurssprache:
englisch
Teilnahme:
Präsenz live
Lektor(en):
Prof. Dr. Rainer Gemulla
Termin(e):
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Information Retrieval and Web Search (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Lernziel:
Expertise:
Students will acquire knowledge of fundamental techniques of Information Retrieval and Web Search, including standard retrieval models, evaluation of information retrieval systems, text classification and clustering, as well as web search topics such as crawling and link-based algorithms.
Methodological competence:
Successful participants will be able to understand state-of-the-art methods for Information Retrieval and Web search, as well as being able to select, apply and evaluate the most appropriate techniques for a variety of different search scenarios.
Personal competence:
  • presentation skills;
  • team work skills.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), written project report, oral project presentation
Lektor(en):
Dr. Daniel Ruffinelli
Termin(e):
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Beschreibung:
Given the vastness and richness of the Web, users need high-performing, scalable and efficient methods to access its wealth of information and satisfy their information needs. As such, being able to search and effectively retrieve relevant pieces of information from large text collections is a crucial task for the majority (if practically not all) of Web applications. In this course we will explore a variety of basic and advanced techniques for text-based information retrieval and Web search. Covered topics will include:
 
  • Efficient text indexing;
  • Boolean and vector space retrieval models;
  • Evaluation of retrieval systems;
  • Probabilistic Information Retrieval;
  • Text classification and clustering;
  • Web search, crawling and link-based algorithms.

Coursework will include homework assignments, a term project and a final exam. Homework assignments are meant to introduce the students to the problems that will be covered in the final exam at the end of the course. In addition, students are expected to successfully complete a term project in teams of 2–4 people. The projects will focus on a variety of IR problems covered in class. Project deliverables include both software (i.e., code and documentation) and a short report explaining the work performed and its evaluation.
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
IS 614 Corporate Knowledge Management (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Registrierungs­informationen:
This course does not have limited capacity. Registration via Portal2 will be possible from August 15, 2024.
Lektor(en):
Dr. Monica Fallon, Dr. Anna-Maria Seeger
Termin(e):
Donnerstag  (wöchentlich) 12.09.2024 – 05.12.2024 10:15 – 11:45 O 151 Hans Luik Hörsaal; Schloss Ostflügel
Beschreibung:
Please find a detailed course description via the following link:
Modulkatalog MMM | Universität Mannheim (uni-mannheim.de)
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
IS 661 Text Analytics (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz live
Registrierungs­informationen:
This course has limited capacity. It is mandatory that you register via Portal2. You can register anytime during the official course registration period (August 15 – August 29, 2024). The time of your registration is not relevant as seats are not assigned on a first-come, first-served basis.
Please note that this lecture is accompanied by an exercise class, you can register for it via Portal2.
Lektor(en):
Dr. Jörg Schlötterer, Prof. Dr. Markus Strohmaier
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 10:15 – 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
Please find a detailed course description via the following link:
Modulkatalog MMM | Universität Mannheim (uni-mannheim.de)
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
IT-Security (Seminar)
EN
Kurstyp:
Seminar
ECTS:
4.0
Kurs geeignet für:
Master
Kurssprache:
englisch
Lektor(en):
Prof. Dr. Frederik Armknecht
Termin(e):
Freitag  (wöchentlich) 06.09.2024 – 06.12.2024 10:15 – 11:45 A 301 Seminarraum; B 6, 23–25 Bauteil A
Knowledge Graphs (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Lernziel:
Expertise:
The participants of this course learn about principles and applications of Semantic Web standards. They become familiar with their technical foundations such as representation and query languages, or logical inference. After taking this course, the students will be aware of the problems and benefits of semantic technologies in the context of tasks such as knowledge management, information search and data integration, and they will be capable of judging the applicability of these technologies for addressing practical challenges.
Methodological competence:
The participants learn how to design and implement Semantic Web applications. They are able to use standardized modeling languages for building knowledge representations, and to query these models by means of languages such as SPARQL.
Personal competence:
By jointly building a semantic web application, the students learn how to effectively work in teams. They improve upon their presentation skills by showing the outcomes of their projects to the other participants of the course.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Regular exercises, team project, written examination (90 minutes)
Termin(e):
⚠ Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 15:30 – 17:00 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Dienstag  (Einzeltermin) 03.09.2024 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Achtung: Einzeltermine in den mit markierten Terminreihen haben sich geändert. Bitte informieren Sie sich im Portal über die Details.
Beschreibung:
  • Vision and Principles of the Semantic Web
  • Representation Languages (XML, RDF, RDF Schema, OWL)
  • Knowledge Modeling: Ontologies and Linked Data
  • Logical Reasoning in RDF and OWL
  • Commercial and Open Source Tools and Systems
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Kryptographie II (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Lernziel:
Fach­kompetenz:
Die Studierenden können Mithilfe aktueller Techniken und Theorien der modernen Kryptographie die Sicherheit von kryptographischen Verfahren einschätzen bzw. Sicherheitsaussagen entsprechend zu beurteilen. Weiterhin sind sie in der Lage, Sicherheitsziele zu erkennen und entsprechende Techniken einzusetzen, die in Kryptographie I nicht behandelt werden konnten.
Methoden­kompetenz:
Den Studierenden sind in der Lage, geeignete Methoden zu Sicherheitsanalyse von kryptographischen Verfahren auszuwählen und einzusetzen. Dazu gehören bspw. die Wahl der passenden Sicherheits­modelle, das Beweisen der Sicherheit aufgrund klar präzisierter Annahmen und die Analyse gegebener Verfahren. Insbesondere besitzen die Studierenden die Fähigkeit, die Sicherheitsargumente für existierende Verfahren zu verstehen und einzuschätzen und auf neue zu übertragen. Weiterhin können sie Techniken und Protokolle einsetzen, um Sicherheitsziele zu erreichen, die mit den in Kryptographie I besprochenen Verfahren noch nicht möglich waren.
Personale Kompetenz:
Das analytische, konzentrierte und präzise Denken der Studierenden wird geschult. Durch die eigenständige Behandlung von Anwendungen, z.B. im Rahmen der Übungs­aufgaben, wird ihr Abstraktions­vermögen weiterentwickelt und der Trans­fer des erlernten Stoffes auf verwandte Fragestellungen gefördert.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Schriftliche Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten)
Lektor(en):
Prof. Dr. Frederik Armknecht
Termin(e):
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 10:15 – 11:45 A 203 Unter­richtsraum; B 6, 23–25 Bauteil A
Beschreibung:
In der Vorlesung erfolgt eine kurze Zusammenstellung der wichtigsten kryptographischen Grundalgorithmen und der für die Vorlesung relevanten mathematischen, algorithmischen und informations- und komplexitätstheoretischen Grundlagen. Diese werden einerseits vertieft und andererseits erweitert. Behandelte Themen sind beispielsweise
  • moderne Techniken der Kryptanalyse und daraus ableitbare Designkriterien für kryptographische Verfahren
  • kryptographische Protokolle
  • Sicherheitsbeweise
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Large Language Models and Agents (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
Kurs geeignet für:
Master
Kurssprache:
englisch
Teilnahme:
Präsenz live
Literatur:
  1. Zhao et al.: A Survey of Large Language Models. 2024. arXiv:2303.18223
  2. Wang et al.: A Survey on Large Language Model based Autonomous Agents. 2024. arXiv:2302.07842
  3. Zhou et al.: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT. 2023. arXiv:2302.09419.
Lektor(en):
Prof. Dr. Christian Bizer, Ralph Peeters
Termin(e):
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 15:30 – 17:00 C 015 Hörsaal; A 5, 6 Bauteil C
Beschreibung:

Large language models (LLMs) such as GPT, Llama, Gemini, and Mixtral have the potential to enable a wide range of new applications and to significantly improve the performance of existing systems. The course introduces students to LLMs and teaches them how to employ the models within applications.

The course covers the following topics:

  1. Introduction to LLMs
  2. Prompt engineering patterns
  3. LLM-based agents
  4. Evaluation of LLMs and agents
  5. Development of LLM-based applications
Model Driven Development (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Präsenz/Online live
Lernziel:
Expertise:
Students will be familiar with the accepted best practices and technologies used in mainstream model-driven development as well as state-of-the-art modeling technologies emerging from research institutions.
Methodological competence:
Students will know how to apply modeling technologies in real-world projects.
Personal competence:
Students will have the capability to analyse, understand and model complex systems.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes)
Lektor(en):
Prof. Dr. Colin Atkinson
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
Beschreibung:
The course focuses on the principles, practices and tools involved in advanced model-driven development. This includes established modelling standard languages (e. g. UML, ATL, OCL . . . ) and modelling infrastructures (e. g. MOF, EMF, etc. ) as well as leading edge, state-of-the-art modelling technologies (e. g. LML, PLM . . . ). Key topics addressed include –
  • Multi-level modeling
  • Meta-modeling
  • Ontology engineering versus model engineering
  • Model trans­formations
  • Domain specific language definition and use
  • Model creation and evolution best practices
  • Model-driven software development
  • Model checking and ontology validation
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Web Data Integration (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Lernziel:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), project report, oral project presentation
Lektor(en):
Prof. Dr. Christian Bizer, Ralph Peeters, Alexander Brinkmann
Termin(e):
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Trans­lation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Web Data Integration (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Teilnahme:
Lernziel:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Written examination (90 minutes), project report, oral project presentation
Lektor(en):
Prof. Dr. Christian Bizer, Ralph Peeters, Alexander Brinkmann
Termin(e):
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Trans­lation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.

Wirtschafts­mathematik (Bachelor)

MAA 510 Introduction of partial differential equations (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
Literatur:
 Script (online)
 L.C. Evans: Partial Differential Equations
 F. John: Partial Differential Equations
Prüfungs­leistung:
oral examination, 30 minutes
Lektor(en):
Dr. Ross Ogilvie
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
  • Basic notions of partial differential equations
  • method of characteristics
  • Laplace equations
  • heat equations
  • wave equation
MAA 514 Analysis III (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
SWS 1:
4
Lernziel:
Fach­kompetenz:
• Karte und Atlas (BK1, BF1)
• Tangentialraum (BK1)
• Integralkurven von Vektorfeldern (BK1)
• Tensoren (BK1)
• Äußeres Produkt und äußere Ableitung von Differenzialformen (BK1, BO2)
• Der Satz von Stokes (BK1)
Methoden­kompetenz:
• Verstehen des Trans­formations­verhaltens unter Kartenwechsel (BF1)
• Rechnen mit Tensoren (BF1)
• Bestimmung von Integralkurven (BF1, BF2)
• Hantieren mit Differenzialformen (BF1)
Personale Kompetenz:
• Teamarbeit (BO1, BF4)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Mündliche Prüfung oder schriftliche Klausur
Lektor(en):
Prof. Dr. Martin Schmidt
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 17:15 – 18:45 C 401 Seminarraum; B 6, 27–29 Bauteil C
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 08:30 – 10:00 C 401 Seminarraum; B 6, 27–29 Bauteil C
Beschreibung:
• Differenzierbare Mannigfaltigkeit
• Vektorfelder
• gewöhnliche Differenzialgleichungen
• Differenzialformen
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
MAB 401 Algebra (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
• Sicherer Umgang mit den algebraischen Grundstrukturen, Gruppen, Ringen, Körpern (BK1).
• Würdigung des Aufbaus dieser Grundstrukturen und wichtiger Beweise (BK1).
Methoden­kompetenz:
• Gruppen als ordnendes Mittel für Symmetrien verstehen (BK1, BF2).
• Körpertheorie als modernes Werkzeug zur Lösung von mathematischen Fragen der Antike würdigen (BK1, BF2).
Personale Kompetenz:
• Strukturen und Symmetrien erkennen und präzisieren (BF1, BO2).
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Mündliche Prüfung oder schriftliche Klausur
Lektor(en):
Dr. Thomas Reichelt
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 12:00 – 13:30 A 203 Unter­richtsraum; B 6, 23–25 Bauteil A
Freitag  (wöchentlich) 06.09.2024 – 06.12.2024 12:00 – 13:30 A 203 Unter­richtsraum; B 6, 23–25 Bauteil A
Beschreibung:
• Gruppen­begriff, Eigenschaften und Anwendungen zyklischer und abelscher Gruppen, Beispiele, auflösbare Gruppen.
• Ringe, Ideale, Euklidische Ringe, Hauptidealringe, ZPW-Ringe, Quotientenringe.
• Körper, Körpererweiterungen, Galois-Theorie.
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
MAC 404 Lineare Optimierung (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
• Verständnis der wesentlichen Konzepte und Lösungs­verfahren der Linearen Optimierung  (BF1, BK1)
• Computer­unter­stütze Umsetzung anwendungs­bezogener Fragestellungen  (BK2, BK3, BO1)
• Querverbindungen zu anderen mathematischen Gebieten identifizierten Klassifikation und Interpretation numerischer Probleme (BK1, BO2)
Methoden­kompetenz:
• Mathematische Modellierung eines Problems (BF3, BO3)
• Konkrete Problemlösungs­strategien und deren Interpretation (BF1, BF2)
Personale Kompetenz:
• Teamarbeit (BO1, BF4, BF5)
Empfohlene Voraussetzungen:
Literatur:
  • Skriptum (online in ILIAS)
  • Tafelanschrieb
Empfohlen sind auch folgende Textbücher:
  • Alexander Schrijver, Theory of linear and integer programming}, Wiley-Interscience Publicaion, 1998 
  • Horst W. Hamacher, Kathrin Klamroth, Lineare Optimierung und Netzwerk­optimierung, Vieweg+Teubner Verlag Wiesbaden, 2006
Prüfungs­leistung:
  1. Ausgearbeitete Übungs­blätter 
  2. Aktive Teilnahme an der Übung
Lektor(en):
Prof. Ph. D. Mathias Staudigl
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 08:30 – 10:00 C 013 Hörsaal; A 5, 6 Bauteil C
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 15:30 – 17:00 C 013 Hörsaal; A 5, 6 Bauteil C
Beschreibung:
  1. Theorie konvexer Polyeder 
  2. Formulierung von linearen Optimierungs­problemen
  3. Dualität
  4. Primale und Duale Simplex Methode
  5. Innere-Punkt Verfahren
  6. Semi-Definite Programme
  7. Netzwerk­probleme 
  8. Ganzzahlige Optimierung
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
MAC 410 Finanz­mathematik (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Bachelor
Kurssprache:
englisch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
• Grundbegriffe der Modellierung in der Finanz­mathematik  (BK2, BK4)
• Grundlagen der Martingaltheorie und des Itô-Kalküls (BK1, BK4)
• Bewertung und Absicherung riskanter Positionen in allgemeinen zeitdiskreten Markt­modellen, im  Binomial­modell sowie in einfachen vollständigen Markt­modellen in stetiger Zeit wie etwa dem Bachelier oder dem Black-Scholes-Modell (BK1, BK2, BK3)
Methoden­kompetenz:
• Grundprinzipien des dynamischen Risiko­management (BF2, BF3, BO1, BO3)
• Beherrschung der Terminologie der Finanz­mathematik wie z.B. den „Greeks“ (BF4, BF5, BO1)
• Erkennen, in welchen Situationen welche Bewertungs­methoden für Risiken sinnvoll sein können (BF2, BF3, BF4, BF5)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Je nach Teilnehmerzahl schriftliche Klausur oder mündliche Prüfung (wird zu Beginn der Vorlesung bekannt gegeben)
Prüfungs­vorleistung: erfolgreiche Teilnahme an den Übungen
Lektor(en):
Prof. Dr. David Johannes Prömel
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 13:45 – 15:15 C 013 Hörsaal; A 5, 6 Bauteil C
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 10:15 – 11:45 C 013 Hörsaal; A 5, 6 Bauteil C
Beschreibung:
• Mathematische Grundlagen der zeitlich diskreten Finanz­mathematik wie bedingte Erwartungen, Martingale und elementare Funktionalanalysis
• Modellierung von Finanz­märkten in diskreter Zeit
• Arbitragetheorie in diskreter Zeit; insb. Fundamentalsatz der arbitragefreien Bewertung (FTAP), sowie Bewertung und Absicherung von europäischen und Optionen in vollständigen und unvollständigen Markt­modellen
• Binomial­modell von Cox, Ross und Rubinstein
• Amerikanische Optionen und optimales Stoppen in diskreter Zeit
• Mathematische Grundlagen der Finanz­mathematik in stetiger Zeit wie Stieltjes-Integration, pfadweiser Itô-Kalkül, elementare partielle Differentialgleichungen
• Modellierung von Finanz­märkten in stetiger Zeit
• Absicherung von Optionen im Bachelier-Modell
• Black-Scholes-Formel
• Variance-swaps, VIX, CPPI
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Markovketten (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
5.0
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
Teilnahme:
Online aufgezeichnet
Lektor(en):
Prof. Dr. Martin Slowik
MAT 301 Analysis I (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
10.0 (Modul/e)
Kurs geeignet für:
Bachelor, Master
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
• Grundbegriffe der reellen Analysis (BF1, BK1)
• Konvergenz von Folgen und Reihen (BK1)
• Stetigkeit von Funktionen in einer Variablen (BK1)
• Differenzierbarkeit von Funktionen in einer Variablen  (BK1)
• Riemanintegral von Funktionen in einer Variablen (BK1)
Methoden­kompetenz:
• mathematische Beweisführung (BF1, BO2)
• Hantieren mit Gleichungen und Ungleichungen (BF1, BO2)
• Berechnen von Grenzwerten (BF1,BO3)
• Kurvendiskussion (BF2, BO3)
• Berechnen von unbestimmten und bestimmten Integralen (BO2,BO3)
Personale Kompetenz:
• Teamarbeit (BF4)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur
Lektor(en):
Prof. Li Chen
Termin(e):
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Freitag  (wöchentlich) 06.09.2024 – 06.12.2024 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
• Mengen und Abbildungen
• reelle Zahlen
• Zahlenfolgen und Reihen
• Funktionen in einer reellen Variablen
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
MAT 303 Lineare Algebra I (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
9.0 (Modul/e)
Kurs geeignet für:
Bachelor, Master
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
• Kenntnis der wesentlichen Ideen und Methoden der Linearen Algebra, Kenntnis der wesentlichen mathematischen Beweismethoden (BK1).
Methoden­kompetenz:
• Grundstrukturen der Linearen Algebra als Grundstrukturen der Mathematik würdigen und sicher mit ihnen umgehen (BK1).
• Lineare Gleichungs­systeme in Anwendungen erkennen und professionell lösen (BF2).
Personale Kompetenz:
• Strukturiertes Denken (BO2).
• Teamarbeit (BF4).
• Kommunikations­fähigkeit (BO1).
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur
Lektor(en):
Prof. Ph. D. Mathias Staudigl
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 08:30 – 10:00 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
• Gruppen, Ringe, Körper, Vektorräume, Lineare Abbildungen, Matrizen, Lineare Gleichungs­systeme, Determinanten,  Eigenwerte und Diagonalisierung,  Euklidische Vektorräume.
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
MAT 306 Numerik (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
9.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
• Verständnis der Grundbegriffe und grundlegenden Methoden der Numerischen Mathematik  (BF1, BK1)
• Algorithmisches Denken und Implementierung grundlegender Verfahren zur Bestimmung von Näherungs­lösungen (BK3)
• Klassifikation und Interpretation numerischer Probleme (BK1, BO3)
Methoden­kompetenz:
• Mathematische Modellierung eines (Anwendungs-)Problems (BF3, BO3)
• Konkrete Problemlösungs­strategien und deren Interpretation (BF1, BF2)
Personale Kompetenz:
• Teamarbeit (BO1,BF4)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur
Lektor(en):
Prof. Dr. Andreas Neuenkirch
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 12:00 – 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 12:00 – 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Beschreibung:
• Numerik linearer Gleichungs­systeme
• Störungs­theorie und Fehleranalyse
• Lineare Ausgleichsrechnung
• Eigenwert­probleme
• Nichtlineare Gleichungs­systeme: Fixpunktiterationen, insbesondere Newton-Verfahren
• Interpolation und Splines
• Numerische Integration
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Stochastik 1 (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
9.0
Kurs geeignet für:
Bachelor
Kurssprache:
deutsch
Teilnahme:
Präsenz live
Lektor(en):
Prof. Dr. Martin Slowik
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 13:45 – 15:15 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A

Wirtschafts­mathematik (Master)

Copulas und Konkordanzmaße (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
4.0
Kurs geeignet für:
Master
Kurssprache:
deutsch
Lektor(en):
Prof. Dr. Klaus D. Schmidt
Termin(e):
Dienstag  (2-wöchentlich) 03.09.2024 – 26.11.2024 10:15 – 11:45 A 303 Seminarraum; B 6, 23–25 Bauteil A
Mittwoch  (2-wöchentlich) 04.09.2024 – 27.11.2024 10:15 – 11:45 A 303 Seminarraum; B 6, 23–25 Bauteil A
Fortgeschrittenenkurs R (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
4.0
Kurs geeignet für:
Master
Kurssprache:
deutsch
SWS 1:
3
Lektor(en):
Johannes Nägele
Termin(e):
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 13:45 – 15:15 A 303 Seminarraum; B 6, 23–25 Bauteil A
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
MAA 506 Topologie und Gleichgewichte (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Master
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Präsenz live
Lernziel:
Fach­kompetenz:
Verständnis der Grundlagen der mengentheoretischen Topologie (MK1)
Beschreibung topologischer und geometrischer Eigenschaften durch algebraische und numerische Invarianten (MK1, MO2)
Umgang mit (simplizialen) Homologie­gruppen (MK1, MO2)
Verständnis der Eigenschaften und der Bedingungen für die Existenz von Nash-Gleichgewichten und Walras'schen Gleichgewichten (MK2, MO3)
Methoden­kompetenz:
Umgang mit einfachen topologischen Räumen und Entscheidung über Homöomorphie zweier gegebener Räume (MK1)
Triangulierung einfacher kompakter Räume und Berechnung ihrer Homologie (MK1, MO2)
Interpretation der Homologie­gruppen (MK1, MO2)
Berechnung von Nash-Gleichgewichten (MK2, MF2)
Personale Kompetenz:
Verständnis der Rolle topologischer Modelle für die Lösung fundamentaler mikro­ökonomischer Fragestellungen (MK2, MO2, MO3, MO4)
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Mündliche Prüfung oder schriftliche Klausur
Lektor(en):
apl. Prof. Dr. Wolfgang Seiler
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 13:45 – 15:15 A 304 Seminarraum; B 6, 23–25 Bauteil A
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 13:45 – 15:15 A 304 Seminarraum; B 6, 23–25 Bauteil A
Beschreibung:
Topologische Räume und stetige Abbildungen
Zusammenhang, Kompaktheit, 1-Abzählbarkeit
Endliche simpliziale Komplexe und ihre Homologie
Anwendung auf Fixpunktsätze, Fundamentalsatz der Algebra u.ä.
Korrespondenzen und der Fixpunktsatz von Kakutani
Spiele und ihre Nash-Gleichgewichte
Volkswirtschaft­liche Systeme und Walras'sche Gleichgewichte
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
MAA 510 Introduction of partial differential equations (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
8.0
Kurs geeignet für:
Bachelor, Master
Kurssprache:
englisch
Literatur:
 Script (online)
 L.C. Evans: Partial Differential Equations
 F. John: Partial Differential Equations
Prüfungs­leistung:
oral examination, 30 minutes
Lektor(en):
Dr. Ross Ogilvie
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Beschreibung:
  • Basic notions of partial differential equations
  • method of characteristics
  • Laplace equations
  • heat equations
  • wave equation
MAA 519 Stochastic Calculus (Vorlesung)
Kurstyp:
Vorlesung
ECTS:
5.0 (Modul/e)
Kurs geeignet für:
Master
Kurssprache:
Teilnahme:
Online aufgezeichnet
Lektor(en):
Prof. Dr. David Johannes Prömel
Beschreibung:
Brownian motion and martingales in continuous time, Stochastic integration and Ito formula, solution theory for stochastic differential equations (strong solutions, linear SDEs), change of measure (Girsanov theorem), martingale representation theorem
MAB 506 Game Theory (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
8.0 (Modul/e)
Kurs geeignet für:
Master
Kurssprache:
deutsch
SWS 1:
4
Teilnahme:
Online aufgezeichnet
Lernziel:
Fach­kompetenz:
Fundierte Kenntnisse der Spieltheorie (MK1).
Bekanntschaft mit einigen Anwendungen in den Wirtschafts­wissenschaften (MK2).
Methoden­kompetenz:
Alle wissenschaft­lichen Arbeiten zur Spieltheorie lesen können (MF1, MO3).
Bei konkreten Situationen vor allem in den Wirtschafts­wissenschaften diese in Modellen der Spieltheorie fassen und analysieren können (MF2).
Personale Kompetenz:
Strategisches Denken mit Bedacht einsetzen können (MO4).
Empfohlene Voraussetzungen:
Prüfungs­leistung:
schriftliche Klausur
Lektor(en):
Prof. Dr. Claus Hertling
Beschreibung:
Grundlagen der Spieltheorie. Spiele in Normalform, Nash-Gleichgewichte, Nullsummenspiele, extensive Spiele (mit oder ohne Zufall und mit oder ohne perfekte Information), teilspielperfekte Gleichgewichte, kooperative Spiele, Shapley-Wert, in Form von Beispielen Anwendungen auf die Wirtschafts­wissenschaften.
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Markov Processes (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
5
Kurs geeignet für:
Master
Kurssprache:
englisch
Teilnahme:
Online aufgezeichnet
Empfohlene Voraussetzungen:
Prüfungs­leistung:
Oral exam
Lektor(en):
Prof. Dr. Martin Slowik
Beschreibung:
The topic of this lecture are Markov processes in continuous time which are an important class of stochastic processes. We also introduce operator semigroups, generators and stochastic equations which provide approaches to the characterisation of Markov processes. The theory will be illustrated with many examples. The course will cover a part of the following topics:

– Construction of stochastic processes (Theorem of Daniel-Kolmogorov)
– Stopping and optional times and stopped processes
– Markov processes and its properties (Markov property, strong Markov property, forward and backward equation)
– Construction of Markov processes via the trans­ition function
– Semigroups of linear operators, resolvents and generators (Theorem of Hille-Yoshida) and its relation to Markov processes
– Relation between Markov processes and martingales (Dynkin martingale)
– functionals of Markov processes and partial differential equations
Numerics of Ordinary Differential Equations (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
Kurs geeignet für:
Master
Kurssprache:
englisch
Lektor(en):
Thomas Schillinger, Prof. Dr. Simone Göttlich
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Numerik Stochastischer Differentialgleichungen (Vorlesung)
DE
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
deutsch
SWS 1:
2
Lernziel:
Fach­kompetenz: Die Studierenden haben die grundlegenden Fragestellungen  und wichtigsten Methoden der Numerik stochastischer Differentialgleichungen erlernt, insbesondere die    Unter­schiede zwischen den verschiedenen Approximations­begriffen, das Euler- und Milstein­verfahren  sowie Multi-level Monte-Carlo-Verfahren (MK1,M02).
Methoden­kompetenz: Die Studierenden können nach Besuch des Moduls gegebene numerische Probleme für stochastische Differentialgleichungen klassifizieren und zur Bearbeitung geeignete Verfahren auswählen bzw. konstruieren (MF1,MF2,MO3).
Personale Kompetenz: Teamarbeit
Empfohlene Voraussetzungen:
Prüfungs­leistung:
mündliche Prüfung
Lektor(en):
Dr. Peter Parczewski
Termin(e):
Mittwoch  (wöchentlich) 04.09.2024 – 04.12.2024 12:00 – 13:30 A 301 Seminarraum; B 6, 23–25 Bauteil A
Beschreibung:
Theoretische Grundlagen: stochastische Prozesse; stochastische Integration und stochastische Differentialgleichungen.
Numerik: Simulation von Gaußprozessen; Fehlerbegriffe; Klassische Approximations­verfahren; Cameron-Clark Theorem; Quadratur von SDGLn; Anwendungen in Technik und Finanz­mathematik
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.
Optimization in ML (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
Teilnahme:
Präsenz live
Lektor(en):
Prof. Dr. Simon Weißmann
Termin(e):
Dienstag  (wöchentlich) 03.09.2024 – 03.12.2024 10:15 – 11:45 C 013 Hörsaal; A 5, 6 Bauteil C
Donnerstag  (wöchentlich) 05.09.2024 – 05.12.2024 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C

Mannheim Master in Data Science

Reinforcement Learning (Vorlesung mit Übung)
DE
Kurstyp:
Vorlesung mit Übung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
deutsch
Teilnahme:
Präsenz live
Lektor(en):
Prof. Dr.-Ing. Margret Keuper
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 10:15 – 11:45 C 014 Hörsaal; A 5, 6 Bauteil C
⚠ Montag  (wöchentlich) 02.09.2024 – 02.12.2024 12:00 – 13:30 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Achtung: Einzeltermine in den mit markierten Terminreihen haben sich geändert. Bitte informieren Sie sich im Portal über die Details.
Responsible AI: Conceptual Foundations, Methods and Applications (Vorlesung)
EN
Kurstyp:
Vorlesung
ECTS:
6.0
Kurs geeignet für:
Master
Kurssprache:
englisch
SWS 1:
2
Lektor(en):
Philipp Kellmeyer
Termin(e):
Montag  (wöchentlich) 02.09.2024 – 02.12.2024 13:45 – 15:15 C 013 Hörsaal; A 5, 6 Bauteil C
Weitere Informationen
1 SWS geben die Dauer eines Kurses an, der wöchentlich während eines Semesters angeboten wird. Eine SWS entspricht 45 Minuten.

Contact School of Business Informatics and Mathematics

Juliane Roth, M.A.

Juliane Roth, M.A. (sie/ihr)

Auslands­koordinatorin, Internationales Marketing, Digitalisierungs­referentin
Universität Mannheim
Fakultät für Wirtschafts­informatik und Wirtschafts­mathematik
B 6, 26
Gebäudeteil B – Raum B 1.05
68159 Mannheim
Tel.: +49 621 181-2340
Fax: +49 621 181-2423
E-Mail: juliane.rothmail-uni-mannheim.de
Sprechstunde:
nach Vereinbarung per E–Mail