Business Informatics and Mathematics in Business and Economics (all)

Information on your course choice

Please note that you have to take the majority of classes at the School of Business Informatics and Mathematics. In most cases you do not need to register for courses, please just attend the first lecture. In case you want to take courses outside from our school you can choose from the university wide electives list.
Good to know: undergraduate students are allowed to take graduate’s level courses at the School of Business Informatics and Mathematics. Partially, there are no requirements for participation in a Master’s course.

Search filter

Business Informatics (Bachelor)

Algorithmen und Datenstrukturen (Lecture)
DE
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
6
Attendance:
Learning target:
Fachkompetenz:
Die Studierenden kennen effiziente Algorithmen und effektive Datenstrukturen für grundlegende Probleme der Informatik und können diese  anwenden und in Computerprogramme umsetzen. Sie beherrschen weiterhin grundlegende Techniken des Entwurfs von Algorithmen und Datenstrukturen, sowie der Korrektheits- und Laufzeitanalyse von Algorithmen
Methodenkompetenz:
Die Studierenden können anwendungsrelevanten Berechnungsproblemen effiziente Algorithmen zuzuordnen bzw. diese  entwickeln und
mittels dieser lösen.
Personale Kompetenz:
Die Studierenden können Berechnungsprobleme in Anwendungszusammenhängen identifizieren, sie formal spezifizieren und damit einer rechentechnischen Lösung zuführen. Sie können auf höherem Niveau abstrahieren und mit formalen Modellierungstechniken arbeiten.
Recommended requirement:
Examination achievement:
Schriftliche Klausur (90 Minuten)
Instructor(s):
Prof. Dr. Matthias Krause, Linda Scheu-Hachtel
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Wednesday  (weekly) 04.09.2024 – 04.12.2024 10:15 – 11:45
Thursday  (weekly) 05.09.2024 – 05.12.2024 17:15 – 18:45
Description:
  • Grundtechniken des Algorithmenentwurfs sowie der Laufzeitanalyse (Divide and Conquer, Greedyheuristiken, Dynamic Programming,…)
  • Grundtechniken des Beweisens der Korrektheit von Algorithmen
  • Sortieralgorithmen
  • Hashing und hashingbasierte Algorithmen
  • Advanced Data Structures
  • Algorithmen für Suchbäume
  • Graphalgorithmen (Tiefensuche, Breitensuche, Minimum Spanning Trees, Kürzeste-Wege-Algorithmen)
  • Ausgewählte weitere Algorithmen (z.B. Pattern Matching, Automatenminimierung…)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
CS 560 Large-Scale Data Management (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
4
Learning target:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Recommended requirement:
Examination achievement:
Written examination, exercises
90 minutes
Instructor(s):
Prof. Dr. Rainer Gemulla
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its ecosystem
• NoSQL
• Stream processing
• Graph databases
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Datenbanksysteme I (Lecture)
DE
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
Verständnis der Grundlagen der Datenmodellierung bzw. des Datenbankentwurfs und der Funktionsweise von relationalen Datenbankmanagementsystemen, insbesondere Anfragebearbeitung und Transaktionsverwaltung
Methodenkompetenz:
Abstraktion, Modellierung, Aufwandsabschätzung für Anfragen
Personale Kompetenz:
Verständnis der Rolle moderner Datenhaltung in einem Unternehmen
Recommended requirement:
Examination achievement:
schriftliche Klausur (90 Minuten)
Instructor(s):
Prof. Dr. Guido Moerkotte
Date(s):
Wednesday  (weekly) 04.09.2024 – 04.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Monday  (weekly) 09.09.2024 – 02.12.2024 12:00 – 13:30 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
Datenbankentwurf, Normalisierung, Anfragebearbeitung, Transaktionsverwaltung
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
1
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 15:30 – 17:00 C 012 Seminarraum; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Formale Grundlagen der Informatik (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
Learning target:
Fachkompetenz:
Die Studierenden beherrschen grundlegende für die Informatik rele-vanten Konzepte, Begriffsbildungen und wissenschaftlichen Arbeits-techniken aus Mathematik und Logik. Sie kennen weiterhin eine erste Auswahl an wichtigen Datenstrukturen und  effizienten Algorithmen für grundlegende Probleme.
Methodenkompetenz:
Die Studierenden besitzen die Fähigkeit, informal gegebene Sachver-halte formal zu modellieren und die entstehenden formalen Struktu-ren bzgl. grundlegender Eigenschaften zu klassifizieren. Sie können weiterhin  auf einem für Informatiker adäquaten Niveau gegebene Aussagen mathematisch  beweisen.
Personale Kompetenz:
Die Studierenden besitzen ein Grundverständnis der för die Informa-tik wichtigen formalen Strukturen, Modelle und Arbeitstechniken. Sie können auf höherem Niveau abstrakt denken und formal modellieren.
Recommended requirement:
Examination achievement:
Schriftliche Klausur (90 Minuten)
Instructor(s):
Prof. Dr. Matthias Krause, Linda Scheu-Hachtel
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 05.09.2024 – 05.12.2024 13:45 – 15:15 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
  • Grundlagen Aussagenlogik (Folgern, Beweisen)
  • Mengen, Relationen, Abbildungen
  • Grundlagen der Kombinatorik (Abzählen von endlichen Mengen, Abzählbarkeit)
  • Einführung Graphentheorie
  • Algebraische Strukturen (Halbgruppen, Gruppen, Homorphismen, Faktorstrukturen)
  • Grundlegende Berechnungsmodelle/Endliche Automaten
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Künstliche Intelligenz (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Ziele und Grundlagen der Künstlichen Intelligenz. Suchverfahren als universelle Problemlösungsverfahren. Problemkomplexität und Heuristische Lösungen. Eigenschaften und Zusammenhang zwischen unterschiedlichen Suchverfahren.
Methodenkompetenz:
Beschreibung konkreter Aufgaben als Such-, Constraint- oder Planungsproblem. Implementierung unterschiedlicher Suchverfahren und Heuristiken.
Recommended requirement:
Examination achievement:
Erfolgreiche Teilnahme am Übungsbetrieb
schriftliche Klausur (90 Minuten)
Instructor(s):
Dr. Christian Meilicke
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 13:45 – 15:15 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Wednesday  (weekly) 04.09.2024 – 04.12.2024 12:00 – 13:30 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Description:
  • Problemeigenschaften und Problemtypen
  • Problemlösen als Suche, Anwendung im Bereich Computerspiele
  • Constraintprobleme und deren Lösung
  • Logische Constraints
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktische Informatik I (Lecture)
DE
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
6
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Die Studierenden können selbständig Algorithmen zu vorgegebenen Problemen entwerfen und in Java, das im parallel laufenden Pro-grammierkurs I unterrichtet wird, objektorientiert programmieren. Methodenkompetenz:
Algorithmenentwurf, Bewertung von vorgegeben Algorithmen Personale Kompetenz:
Kreativität beim Entwurf von Algorithmen, Teamfähigkeit
Recommended requirement:
Examination achievement:
Studienbeginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungsbetrieb
schriftliche Klausur (90 Minuten)

Studienbeginn vor HWS 2011:
schriftliche Klausur (90 Minuten)

Instructor(s):
Prof. Dr.-Ing. Roland Leißa
Date(s):
Thursday  (weekly) 05.09.2024 – 05.12.2024 15:30 – 17:00 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Friday  (weekly) 06.09.2024 – 06.12.2024 15:30 – 17:00 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
Vom Problem zum Algorithmus, vom Algorithmus zum Programm
  • Entwurf von Algorithmen: schrittweise Verfeinerung, Modularität, Objektorientierung (Klassen­hierarchien, Vererbung), Rekursion
  • Die objektorientierte Programmiersprache Java
  • Einfache Datenstrukturen (verkettete Liste, Binärbaum, B-Baum)
  • Modellierung mit UML: Klassendiagramme, Aktivitätsdiagramme, Zustandsdiagramme
  • Einführung in die Theorie der Algorithmen: Berechenbarkeit, Komplexität (O-Kalkül), Testen und Verifikation von Algorithmen und Programmen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Programmierpraktikum I (Lecture)
DE
Course type:
Lecture
ECTS:
5.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
  • Gründliche Kenntnis der Basiskonzepte der Programmiersprache Java
  • Verständnis des Konzepts der Objektorientierung
  • Kenntnisse der algorithmischen Prinzipien  Iteration und Rekursion
  • Basiswissen über das Arbeiten unter einem Linux-Betriebssystem

Methodenkompetenz:

  • Fähigkeit, Algorithmen zu entwerfen
  • Fähigkeit, komplexe Algorithmen in Java ohne Einsatz importierter Methoden zu programmieren
  • Fähigkeit, rekursiv zu programmieren

Personale Kompetenz:

  • Eigenverantwortliches Arbeiten
  • Teamfähigkeit
Recommended requirement:
Examination achievement:
Programmiertestate, Programmierprojekte, Programming Competence Test (180 Minuten)
Instructor(s):
Dr. Ursula Rost
Date(s):
Thursday  (weekly) 05.09.2024 – 05.12.2024 12:00 – 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Description:
Im Programmierpraktikum I werden grundlegende Kenntnisse der objektorientierten Programmierung auf Basis der Sprache Java vermittelt.
Die Studierenden werden von dieser Sprache vor allem folgende Grundmerkmale und Konzepte kennenlernen:
 
  • Basiskonzepte der Programmierung: einfache Datentypen, Variablen, Operatoren, Anweisungen, Kontrollstrukturen
  • Zusammengesetzte Datentypen (Felder)
  • Das Konzept der objektorientierten Programmierung
  • Klassen (Attribute, Methoden, Konstruktoren)
  • Vererbung
  • Pakete, abstrakte Klassen und Interfaces
  • Java API und wichtige Hilfsklassen
  • Ausnahmebehandlung: Exceptions
  • Programmierung Grafischer Oberflächen mit Swing

Die Programmierausbildung erfolgt auf der Basis des Betriebssystems Linux. Hierzu werden ebenfalls Grundkenntnisse vermittelt, die es ermöglichen, einfache Java-Programme zu entwickeln. Im Laufe des Kurses wird darüber hinaus eine einfache Entwicklungsumgebung eingeführt.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Business Informatics (Master)

Advanced Software Engineering (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
After taking the course, students will be familiar with the latest state-of-the-art techniques for specifying the externally visible properties of a software system/component  – that is, for describing a software system/component as a “black box”, and for verifying them. Methodological competence:
Participants will know how to use the expertise acquired during the course to describe the requirements that a system/component has to satisfy and to define tests to check whether a system/component fulfils these requirements. Personal competence:
With the acquired skills and know-how, students will be able to play a key role in projects involving the development of systems, components and software applications.
Recommended requirement:
Examination achievement:
Written examination, 90 minutes
Instructor(s):
Prof. Dr. Colin Atkinson
Date(s):
Friday  (weekly) 06.09.2024 – 06.12.2024 10:15 – 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Description:
The course deals with the model-based specification of software systems and components as well as their verification, validation and quality assurance. The emphasis is on view-based specification methods that use multiple views, expressed in multiple languages, to describe orthogonal aspects of software systems/components. Key examples include structural views represented using class diagrams, operational views expressed using constraint languages and behavioural views expressed using state diagrams. An important focus of the course is the use of these views to define tests and extra-functional properties.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
CS 560 Large-Scale Data Management (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
4
Learning target:
Expertise:
Students will acquire knowledge about methods and systems for managing large datasets and data-intensive computing.

Methodological competence:
• Be able to judge, select, and use traditional or non-traditional data management systems for a given data management task
• Be able to solve computational problems involving large datasets

Personal competence:
• Study independently
• Presentation and writing skills

Recommended requirement:
Examination achievement:
Written examination, exercises
90 minutes
Instructor(s):
Prof. Dr. Rainer Gemulla
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
This course introduces the fundamental concepts and computational paradigms of large-scale data management and Big Data. This includes methods for storing, updating, querying, and analyzing large dataset as well as for data-intensive computing. The course covers concept, algorithms, and system issues; accompanying exercises provide hands-on experience. Topics include:
• Parallel and distributed databases
• MapReduce and its ecosystem
• NoSQL
• Stream processing
• Graph databases
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Registration procedure:
Please note that there is no second date for the exam.
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Date(s):
Wednesday  (weekly) 04.09.2024 – 04.12.2024 10:15 – 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Description:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
1
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Decision Support (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of decision theory.
Methodological competence:
  • Successful participants will be able to identify opportunities for decision support in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project presentation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), homework assignments, case studies
Instructor(s):
Lea Cohausz, Prof. Dr. Heiner Stuckenschmidt
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 15:30 – 17:00 C 012 Seminarraum; A 5, 6 Bauteil C
Description:
The course provides an introduction to decision support techniques as a basis for the design of decision support systems. The course will cover the following topics:
  • Decision Theory
  • Decision- and Business Rules
  • Planning Methods and Algorithms
  • Probabilistic Graphical Models
  • Game Theory and Mechanism Design
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Higher Level Computer Vision (Lecture w/ Exercise)
EN
Course type:
Lecture w/ Exercise
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr.-Ing. Margret Keuper
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 12:00 – 13:30 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Thursday  (weekly) 05.09.2024 – 05.12.2024 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
IE 675b Machine Learning (Lecture)
EN
Course type:
Lecture
ECTS:
9.0
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Rainer Gemulla
Date(s):
Thursday  (weekly) 05.09.2024 – 05.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Information Retrieval and Web Search (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Learning target:
Expertise:
Students will acquire knowledge of fundamental techniques of Information Retrieval and Web Search, including standard retrieval models, evaluation of information retrieval systems, text classification and clustering, as well as web search topics such as crawling and link-based algorithms.
Methodological competence:
Successful participants will be able to understand state-of-the-art methods for Information Retrieval and Web search, as well as being able to select, apply and evaluate the most appropriate techniques for a variety of different search scenarios.
Personal competence:
  • presentation skills;
  • team work skills.
Recommended requirement:
Examination achievement:
Written examination (90 minutes), written project report, oral project presentation
Instructor(s):
Dr. Daniel Ruffinelli
Date(s):
Wednesday  (weekly) 04.09.2024 – 04.12.2024 12:00 – 13:30 C 013 Hörsaal; A 5, 6 Bauteil C
Description:
Given the vastness and richness of the Web, users need high-performing, scalable and efficient methods to access its wealth of information and satisfy their information needs. As such, being able to search and effectively retrieve relevant pieces of information from large text collections is a crucial task for the majority (if practically not all) of Web applications. In this course we will explore a variety of basic and advanced techniques for text-based information retrieval and Web search. Covered topics will include:
 
  • Efficient text indexing;
  • Boolean and vector space retrieval models;
  • Evaluation of retrieval systems;
  • Probabilistic Information Retrieval;
  • Text classification and clustering;
  • Web search, crawling and link-based algorithms.

Coursework will include homework assignments, a term project and a final exam. Homework assignments are meant to introduce the students to the problems that will be covered in the final exam at the end of the course. In addition, students are expected to successfully complete a term project in teams of 2–4 people. The projects will focus on a variety of IR problems covered in class. Project deliverables include both software (i.e., code and documentation) and a short report explaining the work performed and its evaluation.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
IS 614 Corporate Knowledge Management (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Instructor(s):
Dr. Anna-Maria Seeger
Date(s):
Thursday  (weekly) 12.09.2024 – 05.12.2024 10:15 – 11:45 O 151 Hans Luik Hörsaal; Schloss Ostflügel
Description:
Please find a detailed course description via the following link:
Module Catalog MMM | Universität Mannheim (uni-mannheim.de)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
IS 661 Text Analytics (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Instructor(s):
Dr. Jörg Schlötterer, Prof. Dr. Markus Strohmaier
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 10:15 – 11:45 B 144 Hörsaal; A 5, 6 Bauteil B
Description:
Please find a detailed course description via the following link:
Module Catalog MMM | Universität Mannheim (uni-mannheim.de)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
IT-Security (Seminar)
EN
Course type:
Seminar
ECTS:
4.0
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Frederik Armknecht
Date(s):
Friday  (weekly) 06.09.2024 – 06.12.2024 10:15 – 11:45 A 301 Seminarraum; B 6, 23–25 Bauteil A
Knowledge Graphs (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Learning target:
Expertise:
The participants of this course learn about principles and applications of Semantic Web standards. They become familiar with their technical foundations such as representation and query languages, or logical inference. After taking this course, the students will be aware of the problems and benefits of semantic technologies in the context of tasks such as knowledge management, information search and data integration, and they will be capable of judging the applicability of these technologies for addressing practical challenges.
Methodological competence:
The participants learn how to design and implement Semantic Web applications. They are able to use standardized modeling languages for building knowledge representations, and to query these models by means of languages such as SPARQL.
Personal competence:
By jointly building a semantic web application, the students learn how to effectively work in teams. They improve upon their presentation skills by showing the outcomes of their projects to the other participants of the course.
Recommended requirement:
Examination achievement:
Regular exercises, team project, written examination (90 minutes)
Date(s):
⚠ Tuesday  (weekly) 03.09.2024 – 03.12.2024 15:30 – 17:00 D 007 Seminarraum 2; B 6, 27–29 Bauteil D
Tuesday  (single date) 03.09.2024 15:30 – 17:00
Caution: Individual dates in the series marked with have changed. Please check the portal for details.
Description:
  • Vision and Principles of the Semantic Web
  • Representation Languages (XML, RDF, RDF Schema, OWL)
  • Knowledge Modeling: Ontologies and Linked Data
  • Logical Reasoning in RDF and OWL
  • Commercial and Open Source Tools and Systems
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Kryptographie II (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Learning target:
Fachkompetenz:
Die Studierenden können Mithilfe aktueller Techniken und Theorien der modernen Kryptographie die Sicherheit von kryptographischen Verfahren einschätzen bzw. Sicherheitsaussagen entsprechend zu beurteilen. Weiterhin sind sie in der Lage, Sicherheitsziele zu erkennen und entsprechende Techniken einzusetzen, die in Kryptographie I nicht behandelt werden konnten.
Methodenkompetenz:
Den Studierenden sind in der Lage, geeignete Methoden zu Sicherheitsanalyse von kryptographischen Verfahren auszuwählen und einzusetzen. Dazu gehören bspw. die Wahl der passenden Sicherheitsmodelle, das Beweisen der Sicherheit aufgrund klar präzisierter Annahmen und die Analyse gegebener Verfahren. Insbesondere besitzen die Studierenden die Fähigkeit, die Sicherheitsargumente für existierende Verfahren zu verstehen und einzuschätzen und auf neue zu übertragen. Weiterhin können sie Techniken und Protokolle einsetzen, um Sicherheitsziele zu erreichen, die mit den in Kryptographie I besprochenen Verfahren noch nicht möglich waren.
Personale Kompetenz:
Das analytische, konzentrierte und präzise Denken der Studierenden wird geschult. Durch die eigenständige Behandlung von Anwendungen, z.B. im Rahmen der Übungsaufgaben, wird ihr Abstraktionsvermögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert.
Recommended requirement:
Examination achievement:
Schriftliche Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten)
Instructor(s):
Prof. Dr. Frederik Armknecht
Date(s):
Thursday  (weekly) 05.09.2024 – 05.12.2024 10:15 – 11:45 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Description:
In der Vorlesung erfolgt eine kurze Zusammenstellung der wichtigsten kryptographischen Grundalgorithmen und der für die Vorlesung relevanten mathematischen, algorithmischen und informations- und komplexitätstheoretischen Grundlagen. Diese werden einerseits vertieft und andererseits erweitert. Behandelte Themen sind beispielsweise
  • moderne Techniken der Kryptanalyse und daraus ableitbare Designkriterien für kryptographische Verfahren
  • kryptographische Protokolle
  • Sicherheitsbeweise
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Model Driven Development (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
On-campus and online, live
Learning target:
Expertise:
Students will be familiar with the accepted best practices and technologies used in mainstream model-driven development as well as state-of-the-art modeling technologies emerging from research institutions.
Methodological competence:
Students will know how to apply modeling technologies in real-world projects.
Personal competence:
Students will have the capability to analyse, understand and model complex systems.
Recommended requirement:
Examination achievement:
Written examination (90 minutes)
Instructor(s):
Prof. Dr. Colin Atkinson
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 13:45 – 15:15 C 012 Seminarraum; A 5, 6 Bauteil C
Description:
The course focuses on the principles, practices and tools involved in advanced model-driven development. This includes established modelling standard languages (e. g. UML, ATL, OCL . . . ) and modelling infrastructures (e. g. MOF, EMF, etc. ) as well as leading edge, state-of-the-art modelling technologies (e. g. LML, PLM . . . ). Key topics addressed include –
  • Multi-level modeling
  • Meta-modeling
  • Ontology engineering versus model engineering
  • Model transformations
  • Domain specific language definition and use
  • Model creation and evolution best practices
  • Model-driven software development
  • Model checking and ontology validation
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Web Data Integration (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Instructor(s):
Prof. Dr. Christian Bizer, Ralph Peeters, Keti Korini, Alexander Brinkmann
Date(s):
Thursday  (weekly) 05.09.2024 – 05.12.2024 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Translation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Web Data Integration (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will be able to identify opportunities for employing Web data in business applications and will learn to select and apply appropriate techniques for integrating and cleansing Web data.
Methodological competence:
  • Participants will acquire knowledge of the data integration process as well as the techniques that are used in each phase of the process.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills.
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Instructor(s):
Prof. Dr. Christian Bizer, Ralph Peeters, Keti Korini, Alexander Brinkmann
Date(s):
Wednesday  (weekly) 04.09.2024 – 04.12.2024 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
The Web is developing from a medium for publishing textual documents into a medium for sharing structured data. In the course, students will learn how to integrate and cleanse data from this global data space for the later usage of the data within business applications. The course will cover the following topics:
  • Heterogeneity and Distributedness
  • The Data Integration Process
  • Web Data Formats
  • Schema Matching and Data Translation
  • Identity Resolution
  • Data Quality Assessment
  • Data Fusion
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Business Mathematics (Bachelor)

Funktionalanalysis (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Wegintegrale im Komplexen (BK1)
• Potenzreihenkalkül (BK1)
• Fundamentalsatz der Algebra (BK1)
• Cauchyscher Integralsatz und Integralformel (BF1, BK1)
• Residuensatz (BK1, BO3)
Methodenkompetenz:
• Zusammenhang zwischen reeller und komplexer Differenzierbarkeit (BF1, BO2)
• Berechnen von Residuen (BO3)
• Berechnen von reellen Integralen mit dem Residuensatz (BF1, BO3)
• Verständnis von lokalen und globalen Eigenschaften holomorpher Funktionen (BF1, BO2)
Personale Kompetenz:
• Teamarbeit (BF4)
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
Dr. Peter Parczewski
Date(s):
Thursday  (weekly) 05.09.2024 – 05.12.2024 10:15 – 11:45 C 014 Hörsaal; A 5, 6 Bauteil C
Friday  (weekly) 06.09.2024 – 06.12.2024 10:15 – 11:45 C 014 Hörsaal; A 5, 6 Bauteil C
Description:
• Komplexe Differenzierbarkeit
• holomorphe und meromorphe Funktionen
• Analytische Fortseztung
• Singularitäten holomorpher Funktionen
• Residuenkalkül
• spezielle Funktionen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAA 510 Introduction of partial differential equations (Lecture)
EN
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Literature:
 Script (online)
 L.C. Evans: Partial Differential Equations
 F. John: Partial Differential Equations
Examination achievement:
oral examination, 30 minutes
Instructor(s):
Dr. Ross Ogilvie
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Wednesday  (weekly) 04.09.2024 – 04.12.2024 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
  • Basic notions of partial differential equations
  • method of characteristics
  • Laplace equations
  • heat equations
  • wave equation
MAA 514 Analysis III (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Karte und Atlas (BK1, BF1)
• Tangentialraum (BK1)
• Integralkurven von Vektorfeldern (BK1)
• Tensoren (BK1)
• Äußeres Produkt und äußere Ableitung von Differenzialformen (BK1, BO2)
• Der Satz von Stokes (BK1)
Methodenkompetenz:
• Verstehen des Transformationsverhaltens unter Kartenwechsel (BF1)
• Rechnen mit Tensoren (BF1)
• Bestimmung von Integralkurven (BF1, BF2)
• Hantieren mit Differenzialformen (BF1)
Personale Kompetenz:
• Teamarbeit (BO1, BF4)
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
Prof. Dr. Martin Schmidt
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 17:15 – 18:45 C 401 Seminarraum; B 6, 27–29 Bauteil C
Thursday  (weekly) 05.09.2024 – 05.12.2024 08:30 – 10:00 C 401 Seminarraum; B 6, 27–29 Bauteil C
Description:
• Differenzierbare Mannigfaltigkeit
• Vektorfelder
• gewöhnliche Differenzialgleichungen
• Differenzialformen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAB 401 Algebra (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
• Sicherer Umgang mit den algebraischen Grundstrukturen, Gruppen, Ringen, Körpern (BK1).
• Würdigung des Aufbaus dieser Grundstrukturen und wichtiger Beweise (BK1).
Methodenkompetenz:
• Gruppen als ordnendes Mittel für Symmetrien verstehen (BK1, BF2).
• Körpertheorie als modernes Werkzeug zur Lösung von mathematischen Fragen der Antike würdigen (BK1, BF2).
Personale Kompetenz:
• Strukturen und Symmetrien erkennen und präzisieren (BF1, BO2).
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
Dr. Thomas Reichelt
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 12:00 – 13:30 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Friday  (weekly) 06.09.2024 – 06.12.2024 12:00 – 13:30 A 203 Unterrichtsraum; B 6, 23–25 Bauteil A
Description:
• Gruppenbegriff, Eigenschaften und Anwendungen zyklischer und abelscher Gruppen, Beispiele, auflösbare Gruppen.
• Ringe, Ideale, Euklidische Ringe, Hauptidealringe, ZPW-Ringe, Quotientenringe.
• Körper, Körpererweiterungen, Galois-Theorie.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAC 404 Lineare Optimierung (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Verständnis der wesentlichen Konzepte und Lösungsverfahren der Linearen Optimierung  (BF1, BK1)
• Computerunterstütze Umsetzung anwendungsbezogener Fragestellungen  (BK2, BK3, BO1)
• Querverbindungen zu anderen mathematischen Gebieten identifizierten Klassifikation und Interpretation numerischer Probleme (BK1, BO2)
Methodenkompetenz:
• Mathematische Modellierung eines Problems (BF3, BO3)
• Konkrete Problemlösungsstrategien und deren Interpretation (BF1, BF2)
Personale Kompetenz:
• Teamarbeit (BO1, BF4, BF5)
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
Prof. Ph. D. Mathias Staudigl
Description:
• Lineare Programmierung: Simplex Verfahren, Dualität, innere Punkte Verfahren
• Graphentheorie: minimal spannende Bäume, kürzeste Wege, maximale Flüsse
• Ganzzahlige Programmierung: Branch and Bound Verfahren, Schnittebenenverfahren, Heuristiken
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAC 410 Finanzmathematik (Lecture)
EN
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
• Grundbegriffe der Modellierung in der Finanzmathematik  (BK2, BK4)
• Grundlagen der Martingaltheorie und des Itô-Kalküls (BK1, BK4)
• Bewertung und Absicherung riskanter Positionen in allgemeinen zeitdiskreten Marktmodellen, im  Binomialmodell sowie in einfachen vollständigen Marktmodellen in stetiger Zeit wie etwa dem Bachelier oder dem Black-Scholes-Modell (BK1, BK2, BK3)
Methodenkompetenz:
• Grundprinzipien des dynamischen Risikomanagement (BF2, BF3, BO1, BO3)
• Beherrschung der Terminologie der Finanzmathematik wie z.B. den “Greeks” (BF4, BF5, BO1)
• Erkennen, in welchen Situationen welche Bewertungsmethoden für Risiken sinnvoll sein können (BF2, BF3, BF4, BF5)
Personale Kompetenz:
• Teamarbeit (BF4)
Recommended requirement:
Examination achievement:
Je nach Teilnehmerzahl schriftliche Klausur oder mündliche Prüfung (wird zu Beginn der Vorlesung bekannt gegeben)
Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Instructor(s):
Prof. Dr. David Johannes Prömel
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 13:45 – 15:15 C 013 Hörsaal; A 5, 6 Bauteil C
Wednesday  (weekly) 04.09.2024 – 04.12.2024 10:15 – 11:45 C 013 Hörsaal; A 5, 6 Bauteil C
Description:
• Mathematische Grundlagen der zeitlich diskreten Finanzmathematik wie bedingte Erwartungen, Martingale und elementare Funktionalanalysis
• Modellierung von Finanzmärkten in diskreter Zeit
• Arbitragetheorie in diskreter Zeit; insb. Fundamentalsatz der arbitragefreien Bewertung (FTAP), sowie Bewertung und Absicherung von europäischen und Optionen in vollständigen und unvollständigen Marktmodellen
• Binomialmodell von Cox, Ross und Rubinstein
• Amerikanische Optionen und optimales Stoppen in diskreter Zeit
• Mathematische Grundlagen der Finanzmathematik in stetiger Zeit wie Stieltjes-Integration, pfadweiser Itô-Kalkül, elementare partielle Differentialgleichungen
• Modellierung von Finanzmärkten in stetiger Zeit
• Absicherung von Optionen im Bachelier-Modell
• Black-Scholes-Formel
• Variance-swaps, VIX, CPPI
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Markovketten (Lecture)
DE
Course type:
Lecture
ECTS:
5.0
Course suitable for:
Bachelor
Language of instruction:
German
Attendance:
Online, recorded
Instructor(s):
Prof. Dr. Martin Slowik
MAT 301 Analysis I (Lecture)
DE
Course type:
Lecture
ECTS:
10.0 (Modul/e)
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Grundbegriffe der reellen Analysis (BF1, BK1)
• Konvergenz von Folgen und Reihen (BK1)
• Stetigkeit von Funktionen in einer Variablen (BK1)
• Differenzierbarkeit von Funktionen in einer Variablen  (BK1)
• Riemanintegral von Funktionen in einer Variablen (BK1)
Methodenkompetenz:
• mathematische Beweisführung (BF1, BO2)
• Hantieren mit Gleichungen und Ungleichungen (BF1, BO2)
• Berechnen von Grenzwerten (BF1,BO3)
• Kurvendiskussion (BF2, BO3)
• Berechnen von unbestimmten und bestimmten Integralen (BO2,BO3)
Personale Kompetenz:
• Teamarbeit (BF4)
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Li Chen
Date(s):
Wednesday  (weekly) 04.09.2024 – 04.12.2024 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Friday  (weekly) 06.09.2024 – 06.12.2024 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
• Mengen und Abbildungen
• reelle Zahlen
• Zahlenfolgen und Reihen
• Funktionen in einer reellen Variablen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAT 303 Lineare Algebra I (Lecture)
DE
Course type:
Lecture
ECTS:
9.0 (Modul/e)
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Kenntnis der wesentlichen Ideen und Methoden der Linearen Algebra, Kenntnis der wesentlichen mathematischen Beweismethoden (BK1).
Methodenkompetenz:
• Grundstrukturen der Linearen Algebra als Grundstrukturen der Mathematik würdigen und sicher mit ihnen umgehen (BK1).
• Lineare Gleichungssysteme in Anwendungen erkennen und professionell lösen (BF2).
Personale Kompetenz:
• Strukturiertes Denken (BO2).
• Teamarbeit (BF4).
• Kommunikationsfähigkeit (BO1).
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Ph. D. Mathias Staudigl
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 10:15 – 11:45 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 05.09.2024 – 05.12.2024 08:30 – 10:00 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Description:
• Gruppen, Ringe, Körper, Vektorräume, Lineare Abbildungen, Matrizen, Lineare Gleichungssysteme, Determinanten,  Eigenwerte und Diagonalisierung,  Euklidische Vektorräume.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAT 306 Numerik (Lecture)
DE
Course type:
Lecture
ECTS:
9.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
• Verständnis der Grundbegriffe und grundlegenden Methoden der Numerischen Mathematik  (BF1, BK1)
• Algorithmisches Denken und Implementierung grundlegender Verfahren zur Bestimmung von Näherungslösungen (BK3)
• Klassifikation und Interpretation numerischer Probleme (BK1, BO3)
Methodenkompetenz:
• Mathematische Modellierung eines (Anwendungs-)Problems (BF3, BO3)
• Konkrete Problemlösungsstrategien und deren Interpretation (BF1, BF2)
Personale Kompetenz:
• Teamarbeit (BO1,BF4)
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Andreas Neuenkirch
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 12:00 – 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Tuesday  (weekly) 03.09.2024 – 03.12.2024 12:00 – 13:30 B 144 Hörsaal; A 5, 6 Bauteil B
Description:
• Numerik linearer Gleichungssysteme
• Störungstheorie und Fehleranalyse
• Lineare Ausgleichsrechnung
• Eigenwertprobleme
• Nichtlineare Gleichungssysteme: Fixpunktiterationen, insbesondere Newton-Verfahren
• Interpolation und Splines
• Numerische Integration
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Stochastik 1 (Lecture)
DE
Course type:
Lecture
ECTS:
9.0
Course suitable for:
Bachelor
Language of instruction:
German
Attendance:
Live & on-campus
Instructor(s):
Prof. Dr. Martin Slowik
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 13:45 – 15:15 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A
Thursday  (weekly) 05.09.2024 – 05.12.2024 12:00 – 13:30 A 001 Großer Hörsaal; B 6, 23–25 Bauteil A

Business Mathematics (Master)

MAA 506 Topologie und Gleichgewichte (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Verständnis der Grundlagen der mengentheoretischen Topologie (MK1)
Beschreibung topologischer und geometrischer Eigenschaften durch algebraische und numerische Invarianten (MK1, MO2)
Umgang mit (simplizialen) Homologiegruppen (MK1, MO2)
Verständnis der Eigenschaften und der Bedingungen für die Existenz von Nash-Gleichgewichten und Walras'schen Gleichgewichten (MK2, MO3)
Methodenkompetenz:
Umgang mit einfachen topologischen Räumen und Entscheidung über Homöomorphie zweier gegebener Räume (MK1)
Triangulierung einfacher kompakter Räume und Berechnung ihrer Homologie (MK1, MO2)
Interpretation der Homologiegruppen (MK1, MO2)
Berechnung von Nash-Gleichgewichten (MK2, MF2)
Personale Kompetenz:
Verständnis der Rolle topologischer Modelle für die Lösung fundamentaler mikroökonomischer Fragestellungen (MK2, MO2, MO3, MO4)
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
apl. Prof. Dr. Wolfgang Seiler
Date(s):
Tuesday  (weekly) 03.09.2024 – 03.12.2024 13:45 – 15:15 A 304 Seminarraum; B 6, 23–25 Bauteil A
Wednesday  (weekly) 04.09.2024 – 04.12.2024 13:45 – 15:15 A 304 Seminarraum; B 6, 23–25 Bauteil A
Description:
Topologische Räume und stetige Abbildungen
Zusammenhang, Kompaktheit, 1-Abzählbarkeit
Endliche simpliziale Komplexe und ihre Homologie
Anwendung auf Fixpunktsätze, Fundamentalsatz der Algebra u.ä.
Korrespondenzen und der Fixpunktsatz von Kakutani
Spiele und ihre Nash-Gleichgewichte
Volkswirtschaftliche Systeme und Walras'sche Gleichgewichte
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAA 510 Introduction of partial differential equations (Lecture)
EN
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Literature:
 Script (online)
 L.C. Evans: Partial Differential Equations
 F. John: Partial Differential Equations
Examination achievement:
oral examination, 30 minutes
Instructor(s):
Dr. Ross Ogilvie
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 15:30 – 17:00 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Wednesday  (weekly) 04.09.2024 – 04.12.2024 13:45 – 15:15 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Description:
  • Basic notions of partial differential equations
  • method of characteristics
  • Laplace equations
  • heat equations
  • wave equation
MAA 519 Stochastic Calculus (Lecture)
Course type:
Lecture
ECTS:
5.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
Attendance:
Online, recorded
Instructor(s):
Prof. Dr. David Johannes Prömel
Description:
Brownian motion and martingales in continuous time, Stochastic integration and Ito formula, solution theory for stochastic differential equations (strong solutions, linear SDEs), change of measure (Girsanov theorem), martingale representation theorem
MAB 506 Game Theory (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
Online, recorded
Learning target:
Fachkompetenz:
Fundierte Kenntnisse der Spieltheorie (MK1).
Bekanntschaft mit einigen Anwendungen in den Wirtschaftswissenschaften (MK2).
Methodenkompetenz:
Alle wissenschaftlichen Arbeiten zur Spieltheorie lesen können (MF1, MO3).
Bei konkreten Situationen vor allem in den Wirtschaftswissenschaften diese in Modellen der Spieltheorie fassen und analysieren können (MF2).
Personale Kompetenz:
Strategisches Denken mit Bedacht einsetzen können (MO4).
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Claus Hertling
Description:
Grundlagen der Spieltheorie. Spiele in Normalform, Nash-Gleichgewichte, Nullsummenspiele, extensive Spiele (mit oder ohne Zufall und mit oder ohne perfekte Information), teilspielperfekte Gleichgewichte, kooperative Spiele, Shapley-Wert, in Form von Beispielen Anwendungen auf die Wirtschaftswissenschaften.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Markov Processes (Lecture)
EN
Course type:
Lecture
ECTS:
5
Course suitable for:
Master
Language of instruction:
English
Attendance:
Online, recorded
Recommended requirement:
Examination achievement:
Oral exam
Instructor(s):
Prof. Dr. Martin Slowik
Description:
The topic of this lecture are Markov processes in continuous time which are an important class of stochastic processes. We also introduce operator semigroups, generators and stochastic equations which provide approaches to the characterisation of Markov processes. The theory will be illustrated with many examples. The course will cover a part of the following topics:

– Construction of stochastic processes (Theorem of Daniel-Kolmogorov)
– Stopping and optional times and stopped processes
– Markov processes and its properties (Markov property, strong Markov property, forward and backward equation)
– Construction of Markov processes via the transition function
– Semigroups of linear operators, resolvents and generators (Theorem of Hille-Yoshida) and its relation to Markov processes
– Relation between Markov processes and martingales (Dynkin martingale)
– functionals of Markov processes and partial differential equations
Numerics of Ordinary Differential Equations (Lecture)
EN
Course type:
Lecture
ECTS:
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Simone Göttlich
Date(s):
Monday  (weekly) 02.09.2024 – 02.12.2024 10:15 – 11:45 A 101 Kleiner Hörsaal; B 6, 23–25 Bauteil A
Numerik Stochastischer Differentialgleichungen (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
German
Credit hours 1:
2
Learning target:
Fachkompetenz: Die Studierenden haben die grundlegenden Fragestellungen  und wichtigsten Methoden der Numerik stochastischer Differentialgleichungen erlernt, insbesondere die    Unterschiede zwischen den verschiedenen Approximationsbegriffen, das Euler- und Milsteinverfahren  sowie Multi-level Monte-Carlo-Verfahren (MK1,M02).
Methodenkompetenz: Die Studierenden können nach Besuch des Moduls gegebene numerische Probleme für stochastische Differentialgleichungen klassifizieren und zur Bearbeitung geeignete Verfahren auswählen bzw. konstruieren (MF1,MF2,MO3).
Personale Kompetenz: Teamarbeit
Recommended requirement:
Examination achievement:
mündliche Prüfung
Instructor(s):
Dr. Peter Parczewski
Date(s):
Wednesday  (weekly) 04.09.2024 – 04.12.2024 12:00 – 13:30 A 301 Seminarraum; B 6, 23–25 Bauteil A
Description:
Theoretische Grundlagen: stochastische Prozesse; stochastische Integration und stochastische Differentialgleichungen.
Numerik: Simulation von Gaußprozessen; Fehlerbegriffe; Klassische Approximationsverfahren; Cameron-Clark Theorem; Quadratur von SDGLn; Anwendungen in Technik und Finanzmathematik
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Contact School of Business Informatics and Mathematics

Juliane Roth, M.A.

Juliane Roth, M.A. (she/her)

Departmental Exchange Coordinator, Digitization
University of Mannheim
School of Business Informatics and Mathematics
B 6, 26
Gebäudeteil B – Room B 1.05
68159 Mannheim
Phone: +49 621 181-2340
Fax: +49 621 181-2423
E-mail: juliane.rothmail-uni-mannheim.de
Consultation hour(s):
by appointment via email