Business Informatics and Mathematics (all)

Business Informatics (Bachelor)

Analysis für Wirtschaftsinformatiker (Lecture)
DE
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
  • Vertrautheit im Umgang mit den grundlegenden Begriffen und Methoden der Analysis sowie der wesentlichen mathematischen Beweismethoden.

Methodenkompetenz:

  • Fähigkeit Sachverhalte zu formalisieren, abstraktes Denken.

Personale Kompetenz:

  • Teamarbeit.
Recommended requirement:
Examination achievement:
Klausur

Prüfungszulassung: 50 % der Punkte der Übungen
Instructor(s):
Dr. Peter Parczewski
Description:
  • Mengen und Abbildungen
  • Die reellen Zahlen
  • Folgen, Reihen und Potenzreihen
  • Stetigkeit und Differenzierbarkeit von Funktionen in einer reellen Variablen
  • Riemann-Integral
  • Differenzierbarkeit von Funktionen in mehreren reellen Variablen
  • Optional: Mehrdimensionale Integralrechnung, algorithmische Fragestellungen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Registration procedure:
Please note that there is no second date for the exam.
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Instructor(s):
Prof. Dr. Christian Bizer
Description:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Security and Privacy (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Bachelor, Master
Language of instruction:
English
Attendance:
Live & on-campus
Examination achievement:
schriftliche Klausur in Präsenz
Instructor(s):
Prof. Dr. Frederik Armknecht
Kryptographie I (Lecture w/ Exercise)
DE
Course type:
Lecture w/ Exercise
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Nach Abschluss des Moduls  sind die Studierenden befähigt, die größten Risiken im elektronischen Datenverkehr, wie sie bspw. beim Online-Banking oder Einkauf über Online-Händler wie Amazon auftreten können, zu erkennen und zu vermeiden.
Methodenkompetenz:
Die Studierenden können  in konkreten Anwendungsfällen notwendige Sicherheitsziele erkennen und passende Methoden auswählen und einsetzen. Beispiele sind Verfahren zur Geheimhaltung von Daten (Verschlüsselungen), den Aufbau einer vertrauenswürdigen Verbindung (Schlüsselaustausch) und der sicheren Authentifikation (Zertifikate und digitale Signaturen).
Personale Kompetenz:
Das analytische, konzentrierte und präzise Denken der Studierenden wird geschult. Durch die eigenständige Behandlung von Anwendun-gen, z.B. im Rahmen der Übungsaufgaben, wird ihr Abstraktionsver-mögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert.
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Matthias Krause, Jasmin Zalonis
Description:
In der Vorlesung erfolgt eine Einführung in die moderne Kryptographie, d.h. in die Theorie und der Praxis der Absicherung von digitalen Daten. Neben der Bereitstellung der für das Verständnis des Stoffs nötigen mathematischen, algorithmischen und informationstheoretischen Grundlagen werden vor allem die grundlegenden Konzepte und mehrere in der Praxis eingesetzte Verfahren vorgestellt.
 
Behandelt Themen sind beispielsweise:
  • Grundbegriffe der Kryptographie
  • Blockchiffren, z.B. Data Encryption Standard (DES) und Advanced Encryption Standard (AES), und Stromchiffren
  • Verfahren zum sicheren Schlüsselaustausch, bspw. das Diffie-Hellman Protokoll
  • Public-Key Verschlüsselungsverfahren, bspw. RSA
  • Hashfunktionen
  • Message Authentication Codes
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktikum Software Engineering (Lecture)
EN
Course type:
Lecture
ECTS:
5.0
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
4
Attendance:
Online, live
Learning target:
Fachkompetenz:
Kenntnisse der Schlüsseltechnologien der modernen Softwaretechnik, sowie der gängigen Software Entwicklungsprozesse. Dies umfasst insbesondere die Gebiete der System- und Anforderungsanalyse, An-wendungsdesign und Systemarchitektur, Implementierung, Validie-rung und Verifikation, Testen, Softwarequalität, Wartung und Wei-terentwicklung von Softwaresystemen.
Methodenkompetenz:
Die Fähigkeit große Softwaresysteme beschreiben, entwerfen und entwickeln zu können unter Berücksichtigung diverser Risiken, die in industriellen Großprojekten auftreten (bspw. Qualität, Kosten, unter-schiedliche Stakeholder, Termindruck, …).
Personale Kompetenz:
Fähigkeiten große Softwaresysteme im Team zu entwerfen, zu entwickeln / implementieren, zu testen und auszuliefern.
Fähigkeiten ein komplexes Themengebiet in schriftlicher und mündlicher Form klar und unmissverständlich wiederzugeben.
Recommended requirement:
Examination achievement:
Projektarbeit und Abschlusskolloquium
Instructor(s):
Dr. Marcus Kessel
Description:
Die Veranstaltung befasst sich mit dem der Methoden und Techniken die für eine team-orientierte, ingenieurmäßige Entwicklung von nicht-trivialen Softwaresystemen erforderlich sind. Insbesondere sind dies:
  • Software-Entwicklungsprozesse
  • System- und Anforderungsanalyse
  • Anwendungsdesign und Systemarchitektur
  • Softwarequalität
  • Validierung, Verifikation und Testen
  • Wartung und Weiterentwicklung
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktische Informatik II (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Aufbau und Arbeitsweise moderner Digitalrechner, Aufgaben und Funktionsweise moderner Betriebssysteme, insbesondere Prozess- und Speicherverwaltung. Aufbau und Arbeitsweise von Compilern.
Methodenkompetenz:
Entwurf einfacher logischer Schaltungen, Lösung von Programmier-aufgaben in Programmieren, Entwurf einfacher Grammatiken, Um-gang mit Compiler-Generatoren.
Personale Kompetenz:
Selbständiges Arbeiten in Kleingruppen.
Recommended requirement:
Examination achievement:
schriftliche Prüfung (und Vorleistung: 50 Punkte in Projektabgaben)
Instructor(s):
Prof. Dr. Rainer Gemulla
Description:
Die Vorlesung beschäftigt sich mit den technischen und methodischen Grundlagen der Ausführung von Anwendungsprogrammen auf modernen Digitalrechnern. Dies umfasst vor allem die folgenden Gebiete:

1. Rechnerarchitektur
2. Betriebssysteme
3. Compilerbau
4. Java Virtual Machine
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktische Informatik II (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
Aufbau und Arbeitsweise moderner Digitalrechner, Aufgaben und Funktionsweise moderner Betriebssysteme, insbesondere Prozess- und Speicherverwaltung. Aufbau und Arbeitsweise von Compilern.
Methodenkompetenz:
Entwurf einfacher logischer Schaltungen, Lösung von Programmier-aufgaben in Programmieren, Entwurf einfacher Grammatiken, Um-gang mit Compiler-Generatoren.
Personale Kompetenz:
Selbständiges Arbeiten in Kleingruppen.
Recommended requirement:
Examination achievement:
schriftliche Prüfung (und Vorleistung: 50 Punkte in Projektabgaben)
Instructor(s):
Prof. Dr. Rainer Gemulla
Description:
Die Vorlesung beschäftigt sich mit den technischen und methodischen Grundlagen der Ausführung von Anwendungsprogrammen auf modernen Digitalrechnern. Dies umfasst vor allem die folgenden Gebiete:

1. Rechnerarchitektur
2. Betriebssysteme
3. Compilerbau
4. Java Virtual Machine
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktische Informatik II (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
Aufbau und Arbeitsweise moderner Digitalrechner, Aufgaben und Funktionsweise moderner Betriebssysteme, insbesondere Prozess- und Speicherverwaltung. Aufbau und Arbeitsweise von Compilern.
Methodenkompetenz:
Entwurf einfacher logischer Schaltungen, Lösung von Programmier-aufgaben in Programmieren, Entwurf einfacher Grammatiken, Um-gang mit Compiler-Generatoren.
Personale Kompetenz:
Selbständiges Arbeiten in Kleingruppen.
Recommended requirement:
Examination achievement:
schriftliche Prüfung (und Vorleistung: 50 Punkte in Projektabgaben)
Description:
Die Vorlesung beschäftigt sich mit den technischen und methodischen Grundlagen der Ausführung von Anwendungsprogrammen auf modernen Digitalrechnern. Dies umfasst vor allem die folgenden Gebiete:

1. Rechnerarchitektur
2. Betriebssysteme
3. Compilerbau
4. Java Virtual Machine
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Programmierpraktikum II (Lecture)
DE
Course type:
Lecture
ECTS:
5.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
2
Attendance:
Online, live
Learning target:
Fachkompetenz:
  • Gründliche Kenntnis der Programmiersprache Java
  • Fortgeschrittene Programmierkenntnisse in Themenbereichen wie bspw. Assertions, Client-Server Kommunikation, Multi-Threading, sowie häufig verwendete Java-Bibliotheken und Frameworks.
  • Vertraut mit JUnit und den wichtigsten Konzepten des Software-Testens mit Java.

Methodenkompetenz:

  • Fähigkeit die erlernten Fachkompetenzen einzusetzen und somit qualitative anspruchsvolle Java-Anwendungen zu entwickeln und zu warten.

Personale Kompetenz:

  • Eigenverantwortliches Arbeiten
  • Teamfähigkeit
Recommended requirement:
Examination achievement:
Präsenzklausur
Instructor(s):
Dr. Ursula Rost
Description:
Im Programmierpraktikum II werden die erworbenen Kenntnisse aus der Veranstaltung Programmierpraktikum I erweitert und vertieft. Basierend auf der Programmiersprache Java, werde hier die folgenden Themengebiete vermittelt:
 
  • Generische Datentypen,
  • Stream-Klassen (Java IO)
  • Client-Server Kommunikation
  • Multi-Threading
  • JDBC (Datenbanken)
  • Verarbeitung von XML-Dokumenten
  • Assertions (Design by Contract)
  • Testen
  • Weitere ausgewählte Themen

Darüber hinaus werden Werkzeuge für die Team-orientierte  Entwicklung größerer Programmpakete vorgestellt. Dazu gehört insbesondere die Entwicklungsumgebung Eclipse.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Selected Topics in IT-Security (Lecture w/ Exercise)
EN
Course type:
Lecture w/ Exercise
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
4
Attendance:
On-campus and online, live
Learning target:
This course aims to increase the security awareness of students and offers them a basic understanding with respect to a variety of interesting topics. After this course, students will be able to (1) learn about symmetric and asymmetric encryption schemes, (2) classify and describe vulnerabilities and protection mechanisms of popular network protocols, web protocols, and software systems (2) analyze / reason about basic protection mechanisms for modern OSs, software and hardware systems.
Recommended requirement:
Examination achievement:
schriftliche Klausur in Präsenz
Instructor(s):
Prof. Dr. Frederik Armknecht, Christian Müller
Description:
Background and Learning Objectives
 
The large-scale deployment of Internet-based services and the open nature of the Internet come alongside with the increase of security threats against existing services. As the size of the global network grows, the incentives of attackers to abuse the operation of online applications also increase and their advantage in mounting successful attacks becomes considerable.
 
These cyber-attacks often target the resources, availability, and operation of online services. In the recent years, a considerable number of online services such as Amazon, CNN, eBay, and Yahoo were hit by online attacks; the losses in revenues of Amazon and Yahoo were almost 1.1 million US dollars. With an increasing number of services relying on online resources, security becomes an essential component of every system.
 
Content Description
 
This lecture covers the security of computer, software systems, and tamper resistant hardware. The course starts with a basic introduction on encryption functions, spanning both symmetric and asymmetric encryption techniques, discusses the security of the current encryption standard AES and explains the concept of Zero-Knowledge proofs. The course then continues with a careful examination of wired and wireless network security issues, and web security threats and mechanisms. This part also extends to analysis of buffer overflows. Finally, the course also covers a set of selected security topics such as trusted computing and electronic voting.
 
Topics:
 
  • Encryption Schemes (Private Key vs. Public Key, Block cipher security) and Cryptographic Protocols
  • Cryptanalysis,e.g., side channel attacks
  • Network Security
  • Wireless Security
  • Web Security (SQL, X-Site Scripting)
  • Buffer Overflows
  • Malware & Botnets
  • Trusted computing
  • Electronic Voting
  • OS Security
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Softwaretechnik I (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
2
Attendance:
Online, live
Learning target:
Fachkompetenz:
Kenntnisse der Schlüsseltechnologien der modernen Softwaretechnik, sowie der gängigen Software Entwicklungsprozesse. Dies umfasst insbesondere die Gebiete der System- und Anforderungsanalyse, Anwendungsdesign und Systemarchitektur, Implementierung, Validierung und Verifikation, Testen, Softwarequalität, Wartung und Weiterentwicklung von Softwaresystemen. Methodenkompetenz:
Die Fähigkeit große Softwaresysteme beschreiben, entwerfen und entwickeln zu können unter Berücksichtigung diverser Risiken, die in industriellen Großprojekten auftreten (bspw. Qualität, Kosten, unterschiedliche Stakeholder, Termindruck, …). Personale Kompetenz:
Fähigkeiten große Softwaresysteme im Team zu entwerfen, zu entwi-ckeln / implementieren, zu testen und auszuliefern.
Fähigkeiten ein komplexes Themengebiet in schriftlicher und mündli-cher Form klar und unmissverständlich wiederzugeben.
Recommended requirement:
Examination achievement:
schriftliche Präsenzprüfung
Instructor(s):
Prof. Dr. Colin Atkinson
Description:
Die Veranstaltung befasst sich mit dem Kennenlernen, Verstehen und Anwenden der Methoden, Techniken und Werkzeuge, die für eine team-orientierte, ingenieurmäßige Entwicklung von nicht-trivialen Softwaresystemen erforderlich sind. Insbesondere sind dies:
  • Software-Entwicklungsprozesse
  • System- und Anforderungsanalyse
  • Anwendungsdesign und Systemarchitektur
  • Softwarequalität
  • Validierung, Verifikation und Testen
  • Wartung und Weiterentwicklung
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Theoretische Informatik (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
3
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
Die Studierenden beherrschen neue grundlegende Konzepte der Informatik, insbesondere im Themenkreis Berechenbarkeit, effiziente Berechenbarkeit, kryptographische Sicherheit. Sie kennen weiterhin grundlegende Techniken der  Komplexitätsanalyse und können diese auf gegebene Berechnungsprobleme anwenden.
Methodenkompetenz:
Die Studierenden können gegebenen Probleme bezüglich der zu ihrer
Lösung in verschiedener formaler Berechnungsmodelle aufzubringenden Ressourcen klassifizieren. Sie besitzen ein grundlegendes formales Verständnis für die wichtigsten Komplexitätsmerkmale wie nicht berechenbar, nicht effizient berechenbar, effizient berechenbar, kryptographisch sicher.

Personale Kompetenz:
Die Studierenden können Berechnungsprobleme in Anwendungszusammenhängen  identifizieren, sie formal  spezifizieren und bezüglich der zu ihrer Lösung nötigen Ressourcen  klassifizieren. Sie besitzen die Fähigkeit, auf höherem Niveau zu abstrahieren, mit formalen Modellierungstechniken zu arbeiten, und die Komplexität von Problemstellungen abzuschätzen.
Recommended requirement:
Examination achievement:
mündliche Prüfung
Instructor(s):
Prof. Dr. Matthias Krause, Alexander Moch
Description:
  • Grundlegende uniforme und nichtuniforme Berechnungsmodelle und Berechnungsparadigmen
  • Universelle Turingmaschinen und Berechenbarkeit
  • Logik- insbesondere SAT-Algorithmen
  • NP-Vollständigkeitstheorie
  • Formale Sprachen, Grammatiken, Grundlagen des Compilerbaus
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Wirtschaftsinformatik II: Grundlagen der Modellierung (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
2
Attendance:
On-campus and online, live
Learning target:
Fachkompetenz:
  • Kenntnisse aktueller Modellierungssprachen und Werkzeugen.
  • Verständnis für Grundprinzipien und Formalen Grundlagen der Modellierung von Anwendungsdomänen und Prozessen.

Methodenkompetenz:
  • Beschreibung von Domänen und Prozesse einfacher und mittlerer Komplexität mit Hilfe gängiger Sprachen und Werkzeuge

Personale Kompetenz:
  • Verständnis komplexer Zusammenhänge, Arbeiten im Team, Kommunikation von Modellierungsentscheidungen
Recommended requirement:
Examination achievement:
Studienbeginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungsbetrieb
Schriftliche Klausur (90 Minuten)

Studienbeginn vor HWS 2011:
Schriftliche Klausur (90 Minuten)

Instructor(s):
Prof. Dr. Heiner Stuckenschmidt, Dr. Christian Meilicke
Description:
Die Vorlesung behandelt die Rolle konzeptueller Modellierung in der Wirtschaftsinformatik. Es werden Vorteile und Grenzen der Modlelierung im Unternehmenkontext aufgezeigt und Modellierungssprachen und Werkzeuge eingeführt. Inhalte der Veranstaltung umfassen unter anderem:
  • Modellierungsprinzipien
  • Praxisnahe Sprachen (UML, BPMN)
  • Formale Grundlagen von Modellierungssprachen (Logik, Pertri-Netze)
  • Modellierungswerkzeuge.
In der begleitenden Übung erstellen die Teilnehmer konzpetuelle Modelle realer Anwendungsdomänen mit Hilfe aktueller Modellierungssprachen und Werkzeuge.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Wirtschaftsinformatik IV – IS 204 (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
2
Attendance:
Online, recorded
Learning target:
The overall aim is to provide students with concepts of distributed systems from a theoretical and practical view. In the lecture students will learn the theoretical concepts. Some aspects of these topics will be elaborated in more detail in the exercise sessions. Here, concrete examples and implementations are presented and discussed.
Interactive tutorials complement the lectures and exercises and pro-vide means for the students to provide own solutions in essay and code to core problems of distributed information systems.
The students will get a profound base in distributed computing as well as networks with the associated problems and how to adress and solve these challenges.
Recommended requirement:
Examination achievement:
schiftliche Klausur (90 Minuten)
Description:
This lecture covers basic principles of modern information systems. Such systems are characterized by their distributed nature. Thus we will discuss architectures of information systems as well as underlying concepts of computer communication and distributed systems.
 
The following topics will be covered in the lecture:
  • Introduction to Distributed Systems, and ComputerNetworks
    • Distributed Systems: Characteristics and Requirements
    • Communication models
    • Layered communication networks
    • Reference Models (ISO/OSI, TCP/IP)
    • Communication Services: connection-oriented/less
    • Socket API
  • Middleware
    • Distributed Shared Memory
    • Message Passing
    • Pub/Sub
    • Mobile Agents
    • Multimedia
    • RPC, RMI
  • Application Protocols
    • SMTP
    • FTP
    • HTTP+HTML
    • IIOP
  • Presentation Layer
    • Classification
    • Requirements
    • Approaches
    • ASN.1
    • XDR
    • XML
  • Synchronization (conditional if covered in Praktische Informatik II)
    • Processes and concurrency
    • Race Conditions
    • Critical Regions
    • Semaphores/Monitors
    • Deadlocks
  • Time and Global States
    • Physical clocks (Cristian’s algorithm, Logical clocks, Lamport’s algorithm)
    • Vector Clocks
    • Global States
    • Snapshot Algorithm
  • Replication
    • Passive Replication
    • Active Replication
  • Peer to Peer Architectures
    • Application examples
    • Achitectures (centralized, distributed, hybrid)
    • Gnutella
    • Chord
  • Network Security Basics
    • Security Goals, Threats, Attacks
    • Security Mechanisms
    • Threats in Communication Networks
    • Security Goals & Requirements
    • Network Security Analysis
    • Safeguards
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Business Informatics (Master)

Algorithmik (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
3
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
Die Studierenden erlernen wichtige und anspruchsvolle Verfahren zur Lösung komplexer Probleme vorwiegend im Bereich der diskreten Optimierung und der Analyse der Verfahren.
Methodenkompetenz:
Anhand praktischer Probleme aus dem Bereich des  Operation Research erlernen sie wie man diese Probleme  abstrahiert und  mittels der erlernten Verfahren einer Lösung zuführt.
Personale Kompetenz:
Ihr analytisches, konzentriertes und präzises Denken wird  geschult. Durch die eigenständige Behandlung von Anwendungen z. B. aus dem Bereich Operations Research im Rahmen der Übungsaufgaben wird ihr Abstraktionsvermögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert. Durch die Auseinandersetzung mit der Thematik von P versus NP und der beispielhaften Behandlung von praktisch relevanten NP-vollständigen Problemen werden sie  sensibilisiert  für die Thematik der effizienten Lösbarkeit.
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Matthias Krause, Alexander Moch
Description:
Aufbauend auf der Veranstaltung Algorithmen und Datenstrukturen werden fortgeschrittene Konzepte und Algorithmen unter Einbeziehung der Korrektheit und Kosten der Verfahren behandelt. Dabei stehen Fragestellungen, die einen Bezug zu wirtschaftswissenschaftlichen Anwendungen haben im Fokus. Besonderes Augenmerk liegt dabei auf der Abbildung von konkreten praktischen Problemen, auf den Konzepten und deren Lösung mittels der Algorithmen. Die Problematik der nicht effizient (P versus NP) berechenbaren Probleme wird diskutiert und Heuristiken für NP-vollständige Optimierungsprobleme behandelt. Behandelte Fragestellungen sind z. B.:
  • Netzwerke und Algorithmen auf Netzwerken, Max-flow, Min-cost,
  • Matching bipartit, non bipartit, gewichtete
  • Stabiles Heiratsproblem
  • Zuweisungsproblem
  • Touren in Graphen: Handelsreisender, Chinesischer Briefträger
  • SAT-Algorithmen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
CS 710 Data Science Seminar (Seminar)
EN
Course type:
Seminar
ECTS:
4.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Heiko Paulheim
Data Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Registration procedure:
Please note that there is no second date for the exam.
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Instructor(s):
Prof. Dr. Christian Bizer
Description:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Mining II (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire knowledge of advanced techniques and applications of data mining.
Methodological competence:
  • Successful participants will be able to address advanced issues in data mining projects, conduct complex projects and develop applications in the data mining field.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills
Recommended requirement:
Examination achievement:
written examination (90 minutes), written project report, oral project presentation
Instructor(s):
Prof. Dr. Heiko Paulheim
Description:
Data mining deals with the discovery of patterns in data, and with making predictions for the future, based on observations of the past. This course covers advanced issues in data mining which need to be addressed when applying data mining methods in real world projects, including:
  • Data Preprocessing
  • Regression and Forecasting
  • Dimensionality Reduction
  • Anomaly Detection
  • Time Series Analysis
  • Parameter Tuning
  • Ensemble Learning
  • Online Learning
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Security and Privacy (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Bachelor, Master
Language of instruction:
English
Attendance:
Live & on-campus
Examination achievement:
schriftliche Klausur in Präsenz
Instructor(s):
Prof. Dr. Frederik Armknecht
Database Systems II (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Online, live
Learning target:
Fachkompetenz:
  • Grundlegende Kenntnisse in verteilte relationale Datenbanken
  • objektorientierte Datenbanken
  • objektrelationale Datenbanken
  • deduktive Datenbanken
  • XML-Datenbanken
  • OLAP/OLTP
  • Leistungsbewertung

Methodenkompetenz:

  • Verständnis der alternativen Datenrepräsentationen, deren Vor- und Nachteile
  • Zielorientierter Einsatz der verschiedenen Datenrepräsentationen

Personale Kompetenz:

  • Verständnis der Rolle alternativer Datenmodelle für fundamentale betriebliche Informationssysteme
Recommended requirement:
Examination achievement:
schriftliche Präsenzprüfung
Instructor(s):
Prof. Dr. Guido Moerkotte
Description:
Über das relationale Modell hinausgehende Themen (objektorientierte, objektrelationale Datenbanken, SQL/XML).
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Database Systems II (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Learning target:
Fachkompetenz:
  • Grundlegende Kenntnisse in verteilte relationale Datenbanken
  • objektorientierte Datenbanken
  • objektrelationale Datenbanken
  • deduktive Datenbanken
  • XML-Datenbanken
  • OLAP/OLTP
  • Leistungsbewertung

Methodenkompetenz:

  • Verständnis der alternativen Datenrepräsentationen, deren Vor- und Nachteile
  • Zielorientierter Einsatz der verschiedenen Datenrepräsentationen

Personale Kompetenz:

  • Verständnis der Rolle alternativer Datenmodelle für fundamentale betriebliche Informationssysteme
Recommended requirement:
Examination achievement:
schriftliche Präsenzprüfung
Instructor(s):
Prof. Dr. Guido Moerkotte
Description:
Über das relationale Modell hinausgehende Themen (objektorientierte, objektrelationale Datenbanken, SQL/XML).
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Database Technology (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Heiko Paulheim
Information Retrieval and Web Search (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
On-campus and online, live
Learning target:
Expertise:
Students will acquire knowledge of fundamental techniques of Information Retrieval and Web Search, including standard retrieval models, evaluation of information retrieval systems, text classification and clustering, as well as web search topics such as crawling and link-based algorithms.
Methodological competence:
Successful participants will be able to understand state-of-the-art methods for Information Retrieval and Web search, as well as being able to select, apply and evaluate the most appropriate techniques for a variety of different search scenarios.
Personal competence:
  • presentation skills;
  • team work skills.
Recommended requirement:
Examination achievement:
Written examination (90 minutes), written project report, oral project presentation
Instructor(s):
Prof. Dr. Simone Paolo Ponzetto
Description:
Given the vastness and richness of the Web, users need high-performing, scalable and efficient methods to access its wealth of information and satisfy their information needs. As such, being able to search and effectively retrieve relevant pieces of information from large text collections is a crucial task for the majority (if practically not all) of Web applications. In this course we will explore a variety of basic and advanced techniques for text-based information retrieval and Web search. Covered topics will include:
 
  • Efficient text indexing;
  • Boolean and vector space retrieval models;
  • Evaluation of retrieval systems;
  • Probabilistic Information Retrieval;
  • Text classification and clustering;
  • Web search, crawling and link-based algorithms.

Coursework will include homework assignments, a term project and a final exam. Homework assignments are meant to introduce the students to the problems that will be covered in the final exam at the end of the course. In addition, students are expected to successfully complete a term project in teams of 2–4 people. The projects will focus on a variety of IR problems covered in class. Project deliverables include both software (i.e., code and documentation) and a short report explaining the work performed and its evaluation.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Parallel Programming (Lecture w/ Exercise)
EN
Course type:
Lecture w/ Exercise
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Attendance:
Online, live & recorded
Learning target:

Expertise:

  • Know various forms of parallelism.

(MK1, MK2, MF1, MF3) 

Methodological competence:

  • Students will be able to use various forms of parallelism in software projects.

(MF1, MF2, MF3) 

Personal competence:

  • Learn how to read software documentation. 
  • Teamwork skills. 

(MK01, MK02) 

Recommended requirement:
Literature:
Schmidt, Bertil; Gonzalez-Dominguez, Jorge; Hundt, Christian; Schlarb, Moritz (2017). Parallel Programming: Concepts and Practice. ISBN-13: 978-0128498903. ISBN-10: 0128498900.
Examination achievement:
Written examination (90 minutes)
Instructor(s):
Prof. Dr.-Ing. Roland Leißa
Description:
In this course we will talk about various forms of paralleilsm:
  • multi-threading
  • SIMD vectorization
  • GPUs
  • distributed systems

In order to target these hardware architectures, we will also discuss several programming languages/systems such as:

  • Java
  • C/C++
  • OpenCL/CUDA
  • assembly language
  • OpenMP
  • MPI
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Query Optimization (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Online, live
Learning target:
Fachkompetenz:
  • Verständnis der Grundlegenden Funktionsweisen alternativer Plangeneratoren,
  • detaillierte Kenntnisse physischer Planalternativen,
  • detaillierte Kostenanalysen

Methodenkompetenz:

  • Algorithmen und Komplexitäten der Plangenerierung,
  • Kostenrechnung anhand gegebener Statistiken

Personale Kompetenz:

  • Fundamentales Verständnis für die Probleme und Lösungen der traditionellen Anfragebearbeitung
Recommended requirement:
Examination achievement:
mündliche Präsenzprüfung
Instructor(s):
Prof. Dr. Guido Moerkotte
Description:
Grundlagen der Anfrageoptimierung
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Web Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire knowledge of the techniques, opportunities and applications of Web mining. Methodological competence:
  • Successful participants will be able to identify opportunities for mining knowledge from Web content, select and apply appropriate techniques and interpret the results.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills
Recommended requirement:
Examination achievement:
Offline exam / Präsenzklausur
Instructor(s):
Prof. Dr. Christian Bizer
Description:
The textual content as well as the structured data which is accessible on the Web has an enormous potential for being mined to derive knowledge about nearly any aspect of human life. The course covers advanced data mining techniques for extracting knowledge from Web content as a basis for business decisions and applications. The course will cover the following topics:
  • Goals and Principles of Web Mining
  • Gathering and Preprocessing Web Data
  • Social Network Analysis
  • Opinion Mining and Sentiment Analysis
  • Web Usage Mining
  • Executing Large Scale Web Mining Tasks
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Business Informatics (Bachelor)

Analysis für Wirtschaftsinformatiker (Lecture)
DE
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
  • Vertrautheit im Umgang mit den grundlegenden Begriffen und Methoden der Analysis sowie der wesentlichen mathematischen Beweismethoden.

Methodenkompetenz:

  • Fähigkeit Sachverhalte zu formalisieren, abstraktes Denken.

Personale Kompetenz:

  • Teamarbeit.
Recommended requirement:
Examination achievement:
Klausur

Prüfungszulassung: 50 % der Punkte der Übungen
Instructor(s):
Dr. Peter Parczewski
Description:
  • Mengen und Abbildungen
  • Die reellen Zahlen
  • Folgen, Reihen und Potenzreihen
  • Stetigkeit und Differenzierbarkeit von Funktionen in einer reellen Variablen
  • Riemann-Integral
  • Differenzierbarkeit von Funktionen in mehreren reellen Variablen
  • Optional: Mehrdimensionale Integralrechnung, algorithmische Fragestellungen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Registration procedure:
Please note that there is no second date for the exam.
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Instructor(s):
Prof. Dr. Christian Bizer
Description:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Security and Privacy (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Bachelor, Master
Language of instruction:
English
Attendance:
Live & on-campus
Examination achievement:
schriftliche Klausur in Präsenz
Instructor(s):
Prof. Dr. Frederik Armknecht
Dynamische Systeme und Stabilität (Lecture)
DE
Course type:
Lecture
ECTS:
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
• Grundbegriffe gewöhnlicher Differentialgleichungen (BF1, BK1)
• Trennung der Variablen, exakte Differentialgleichungen (BK1, BO3)
• maximale Lösungen (BK1)
• lineare Flüsse (BK1)
• Prinzip der linearisierten Stabilität (BK1, BF1)
Methodenkompetenz:
• Erkennen verschiedener Differentialgleichungen (BF2)
• Berechnen von Lösungen von Differentialgleichungen (BF2, BO3)
• Erstellung von Phasendiagrammen (BF2)
• Diskussion der Stabilität von Gleichgewichten (BF2, BO3)
Recommended requirement:
Literature:
  • Eigenes Skript (online)
  • W. Walter, Gewöhnliche Differentialgleichungen
  • H. Amann, Gewöhnliche Differentialgleichungen
  • J.W. Prüss, M. Wilke, Gewöhnliche Differentialgleichungen und dynamische Systeme
  • M. Braun, Differentialgleichungen und ihre Anwendungen
Examination achievement:
Klausur

Prüfungszulassung:
50 % der Punkte der Übungen
Instructor(s):
Prof. Li Chen
Description:
  • gewöhnliche Differentialgleichungen
  • Existenz und Eindeutigkeit
  • Systeme von Differentialgleichungen
  • Qualitative Theorie der Differentialgleichungen
  • hyperbolische Flüsse
  • Stabilitätsanalyse
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Kryptographie I (Lecture w/ Exercise)
DE
Course type:
Lecture w/ Exercise
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Nach Abschluss des Moduls  sind die Studierenden befähigt, die größten Risiken im elektronischen Datenverkehr, wie sie bspw. beim Online-Banking oder Einkauf über Online-Händler wie Amazon auftreten können, zu erkennen und zu vermeiden.
Methodenkompetenz:
Die Studierenden können  in konkreten Anwendungsfällen notwendige Sicherheitsziele erkennen und passende Methoden auswählen und einsetzen. Beispiele sind Verfahren zur Geheimhaltung von Daten (Verschlüsselungen), den Aufbau einer vertrauenswürdigen Verbindung (Schlüsselaustausch) und der sicheren Authentifikation (Zertifikate und digitale Signaturen).
Personale Kompetenz:
Das analytische, konzentrierte und präzise Denken der Studierenden wird geschult. Durch die eigenständige Behandlung von Anwendun-gen, z.B. im Rahmen der Übungsaufgaben, wird ihr Abstraktionsver-mögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert.
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Matthias Krause, Jasmin Zalonis
Description:
In der Vorlesung erfolgt eine Einführung in die moderne Kryptographie, d.h. in die Theorie und der Praxis der Absicherung von digitalen Daten. Neben der Bereitstellung der für das Verständnis des Stoffs nötigen mathematischen, algorithmischen und informationstheoretischen Grundlagen werden vor allem die grundlegenden Konzepte und mehrere in der Praxis eingesetzte Verfahren vorgestellt.
 
Behandelt Themen sind beispielsweise:
  • Grundbegriffe der Kryptographie
  • Blockchiffren, z.B. Data Encryption Standard (DES) und Advanced Encryption Standard (AES), und Stromchiffren
  • Verfahren zum sicheren Schlüsselaustausch, bspw. das Diffie-Hellman Protokoll
  • Public-Key Verschlüsselungsverfahren, bspw. RSA
  • Hashfunktionen
  • Message Authentication Codes
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAA 403 Dynamische Systeme (Lecture)
DE
Course type:
Lecture
ECTS:
5.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
4
Attendance:
On-campus and online, live & recorded
Learning target:

Fachkompetenz:
• Grundbegriffe gewöhnlicher Differentialgleichungen (BF1, BK1)
• Trennung der Variablen, exakte Differentialgleichungen (BK1, BO3)
• maximale Lösungen (BK1)

Methodenkompetenz:
• Erkennen verschiedener Differentialgleichungen (BF2)
• Berechnen von Lösungen von Differentialgleichungen (BF2, BO3)
• Erstellung von Phasendiagrammen (BF2)
Recommended requirement:
Literature:

• Eigenes Skript (online)
• H. Amann, Gewöhnliche Differentialgleichungen
• J.W. Prüss, M. Wilke, Gewöhnliche Differentialgleichungen und    dynamische Systeme
Examination achievement:
Mündliche Prüfung
Instructor(s):
Prof. Li Chen
Description:

• gewöhnliche Differentialgleichungen
• Existenz und Eindeutigkeit
• Systeme von Differentialgleichungen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAC 405 Monte Carlo Methods (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
Mathematischer Hintergrund und Algorithmen zur Erzeugung von Pseudozufallszahlen (BK1, BK3, BO3)
Grundverständnis für die Erzeugung von Algorithmen für die Simulation von „discrete event systems“ (BK3, BO2)
„Goodness-of-fit“ Tests (BK1)
Mathematischer Hintergrund und Algorithmen zur numerischen Behandlung von Markovketten in diskreter und stetiger Zeit (BK3, BO3)
Grundverständnis von Monte-Methoden und ihrer Verbesserungen durch Varianzreduktionsverfahren (BK1, BK3, BO3)
Grundverständnis der Markovketten-Monte-Carlo Methode (BK1, BK3, BO3)
Methodenkompetenz:
Erkennen, welche Algorithmen zur Erzeugung von Pseudozufallszahlen verschiedener Verteilungen eingesetzt werden können, Umsetzung in konkrete Programme (BF2, BF3, BO3)
Fähigkeit einfache stochastische Modelle zu simulieren und die Ergebnisse zu validieren (BF2, BF3, BO3)
Grundkenntnisse in der Programmierung mit Scilab (BF3)
Personale Kompetenz:
Teamarbeit (BF4)
Recommended requirement:
Examination achievement:
oral examination:

Examination admission: 50 % of the points in the exercises (on the exercise sheets of first half and the second half of the semester).
Instructor(s):
Dr. Peter Parczewski
Description:
Erzeugung von Pseudozufallszahlen: Inversions-, Kompositions- und Akzeptanz-Verwerfungsmethode, spezielle Methoden
Simulation diskreter Ereignissysteme
Monte-Carlo-Methode, Varianzreduktion
Statistische Validierung: Chi-Quadrat-Test, Kolmogorov-Smirnov-Test
Numerische Behandlung von Markovketten
Markovketten-Monte-Carlo
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAT 302 Analysis II (Lecture)
DE
Course type:
Lecture
ECTS:
10.0 (Modul/e)
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
• Konvergenz in metrischen Räumen (BK1)
• Stetigkeit von Abbildungen zwischen metrischen Räumen (BK1)
• Differenzierbarkeit von Funktionen mehrerer Variablen (BK1)
• Grundbegriffe der nichtlinearen Analysis (BF1, BK1)
• Integration von Funktionen mehrerer Variablen (BK1)

Methodenkompetenz:
• mathematische Beweisführung (BF1, BO2)
• Hantieren mit Gleichungen und Ungleichungen (BF1, BO2)
• Berechnen von Grenzwerten (BF1, BO3)
• Berechnen von Ableitungen (BO2)
• Bestimmung von Minima unter Zwangsbedingungen (BF2, BO3)
• Berechnen von Integralen (BO2)
Recommended requirement:
Literature:

• Eigenes Skript (online)
• K. Fritzsche, Grundkurs Analysis II
• O. Forster, Analysis II
• H. Heuser, Lehrbuch der Analysis II
Examination achievement:
Klausur

Prüfungszulassung:
50 % der Punkte der Übungen
Instructor(s):
Prof. Li Chen
Description:
  • metrische Räume
  • normierte Vektorräume
  • Funktionen mehrerer Variabler
  • Funktionale
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktikum Software Engineering (Lecture)
EN
Course type:
Lecture
ECTS:
5.0
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
4
Attendance:
Online, live
Learning target:
Fachkompetenz:
Kenntnisse der Schlüsseltechnologien der modernen Softwaretechnik, sowie der gängigen Software Entwicklungsprozesse. Dies umfasst insbesondere die Gebiete der System- und Anforderungsanalyse, An-wendungsdesign und Systemarchitektur, Implementierung, Validie-rung und Verifikation, Testen, Softwarequalität, Wartung und Wei-terentwicklung von Softwaresystemen.
Methodenkompetenz:
Die Fähigkeit große Softwaresysteme beschreiben, entwerfen und entwickeln zu können unter Berücksichtigung diverser Risiken, die in industriellen Großprojekten auftreten (bspw. Qualität, Kosten, unter-schiedliche Stakeholder, Termindruck, …).
Personale Kompetenz:
Fähigkeiten große Softwaresysteme im Team zu entwerfen, zu entwickeln / implementieren, zu testen und auszuliefern.
Fähigkeiten ein komplexes Themengebiet in schriftlicher und mündlicher Form klar und unmissverständlich wiederzugeben.
Recommended requirement:
Examination achievement:
Projektarbeit und Abschlusskolloquium
Instructor(s):
Dr. Marcus Kessel
Description:
Die Veranstaltung befasst sich mit dem der Methoden und Techniken die für eine team-orientierte, ingenieurmäßige Entwicklung von nicht-trivialen Softwaresystemen erforderlich sind. Insbesondere sind dies:
  • Software-Entwicklungsprozesse
  • System- und Anforderungsanalyse
  • Anwendungsdesign und Systemarchitektur
  • Softwarequalität
  • Validierung, Verifikation und Testen
  • Wartung und Weiterentwicklung
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktische Informatik II (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Aufbau und Arbeitsweise moderner Digitalrechner, Aufgaben und Funktionsweise moderner Betriebssysteme, insbesondere Prozess- und Speicherverwaltung. Aufbau und Arbeitsweise von Compilern.
Methodenkompetenz:
Entwurf einfacher logischer Schaltungen, Lösung von Programmier-aufgaben in Programmieren, Entwurf einfacher Grammatiken, Um-gang mit Compiler-Generatoren.
Personale Kompetenz:
Selbständiges Arbeiten in Kleingruppen.
Recommended requirement:
Examination achievement:
schriftliche Prüfung (und Vorleistung: 50 Punkte in Projektabgaben)
Instructor(s):
Prof. Dr. Rainer Gemulla
Description:
Die Vorlesung beschäftigt sich mit den technischen und methodischen Grundlagen der Ausführung von Anwendungsprogrammen auf modernen Digitalrechnern. Dies umfasst vor allem die folgenden Gebiete:

1. Rechnerarchitektur
2. Betriebssysteme
3. Compilerbau
4. Java Virtual Machine
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktische Informatik II (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
Aufbau und Arbeitsweise moderner Digitalrechner, Aufgaben und Funktionsweise moderner Betriebssysteme, insbesondere Prozess- und Speicherverwaltung. Aufbau und Arbeitsweise von Compilern.
Methodenkompetenz:
Entwurf einfacher logischer Schaltungen, Lösung von Programmier-aufgaben in Programmieren, Entwurf einfacher Grammatiken, Um-gang mit Compiler-Generatoren.
Personale Kompetenz:
Selbständiges Arbeiten in Kleingruppen.
Recommended requirement:
Examination achievement:
schriftliche Prüfung (und Vorleistung: 50 Punkte in Projektabgaben)
Instructor(s):
Prof. Dr. Rainer Gemulla
Description:
Die Vorlesung beschäftigt sich mit den technischen und methodischen Grundlagen der Ausführung von Anwendungsprogrammen auf modernen Digitalrechnern. Dies umfasst vor allem die folgenden Gebiete:

1. Rechnerarchitektur
2. Betriebssysteme
3. Compilerbau
4. Java Virtual Machine
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Praktische Informatik II (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
4
Learning target:
Fachkompetenz:
Aufbau und Arbeitsweise moderner Digitalrechner, Aufgaben und Funktionsweise moderner Betriebssysteme, insbesondere Prozess- und Speicherverwaltung. Aufbau und Arbeitsweise von Compilern.
Methodenkompetenz:
Entwurf einfacher logischer Schaltungen, Lösung von Programmier-aufgaben in Programmieren, Entwurf einfacher Grammatiken, Um-gang mit Compiler-Generatoren.
Personale Kompetenz:
Selbständiges Arbeiten in Kleingruppen.
Recommended requirement:
Examination achievement:
schriftliche Prüfung (und Vorleistung: 50 Punkte in Projektabgaben)
Description:
Die Vorlesung beschäftigt sich mit den technischen und methodischen Grundlagen der Ausführung von Anwendungsprogrammen auf modernen Digitalrechnern. Dies umfasst vor allem die folgenden Gebiete:

1. Rechnerarchitektur
2. Betriebssysteme
3. Compilerbau
4. Java Virtual Machine
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Programmierpraktikum II (Lecture)
DE
Course type:
Lecture
ECTS:
5.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
2
Attendance:
Online, live
Learning target:
Fachkompetenz:
  • Gründliche Kenntnis der Programmiersprache Java
  • Fortgeschrittene Programmierkenntnisse in Themenbereichen wie bspw. Assertions, Client-Server Kommunikation, Multi-Threading, sowie häufig verwendete Java-Bibliotheken und Frameworks.
  • Vertraut mit JUnit und den wichtigsten Konzepten des Software-Testens mit Java.

Methodenkompetenz:

  • Fähigkeit die erlernten Fachkompetenzen einzusetzen und somit qualitative anspruchsvolle Java-Anwendungen zu entwickeln und zu warten.

Personale Kompetenz:

  • Eigenverantwortliches Arbeiten
  • Teamfähigkeit
Recommended requirement:
Examination achievement:
Präsenzklausur
Instructor(s):
Dr. Ursula Rost
Description:
Im Programmierpraktikum II werden die erworbenen Kenntnisse aus der Veranstaltung Programmierpraktikum I erweitert und vertieft. Basierend auf der Programmiersprache Java, werde hier die folgenden Themengebiete vermittelt:
 
  • Generische Datentypen,
  • Stream-Klassen (Java IO)
  • Client-Server Kommunikation
  • Multi-Threading
  • JDBC (Datenbanken)
  • Verarbeitung von XML-Dokumenten
  • Assertions (Design by Contract)
  • Testen
  • Weitere ausgewählte Themen

Darüber hinaus werden Werkzeuge für die Team-orientierte  Entwicklung größerer Programmpakete vorgestellt. Dazu gehört insbesondere die Entwicklungsumgebung Eclipse.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Selected Topics in IT-Security (Lecture w/ Exercise)
EN
Course type:
Lecture w/ Exercise
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
4
Attendance:
On-campus and online, live
Learning target:
This course aims to increase the security awareness of students and offers them a basic understanding with respect to a variety of interesting topics. After this course, students will be able to (1) learn about symmetric and asymmetric encryption schemes, (2) classify and describe vulnerabilities and protection mechanisms of popular network protocols, web protocols, and software systems (2) analyze / reason about basic protection mechanisms for modern OSs, software and hardware systems.
Recommended requirement:
Examination achievement:
schriftliche Klausur in Präsenz
Instructor(s):
Prof. Dr. Frederik Armknecht, Christian Müller
Description:
Background and Learning Objectives
 
The large-scale deployment of Internet-based services and the open nature of the Internet come alongside with the increase of security threats against existing services. As the size of the global network grows, the incentives of attackers to abuse the operation of online applications also increase and their advantage in mounting successful attacks becomes considerable.
 
These cyber-attacks often target the resources, availability, and operation of online services. In the recent years, a considerable number of online services such as Amazon, CNN, eBay, and Yahoo were hit by online attacks; the losses in revenues of Amazon and Yahoo were almost 1.1 million US dollars. With an increasing number of services relying on online resources, security becomes an essential component of every system.
 
Content Description
 
This lecture covers the security of computer, software systems, and tamper resistant hardware. The course starts with a basic introduction on encryption functions, spanning both symmetric and asymmetric encryption techniques, discusses the security of the current encryption standard AES and explains the concept of Zero-Knowledge proofs. The course then continues with a careful examination of wired and wireless network security issues, and web security threats and mechanisms. This part also extends to analysis of buffer overflows. Finally, the course also covers a set of selected security topics such as trusted computing and electronic voting.
 
Topics:
 
  • Encryption Schemes (Private Key vs. Public Key, Block cipher security) and Cryptographic Protocols
  • Cryptanalysis,e.g., side channel attacks
  • Network Security
  • Wireless Security
  • Web Security (SQL, X-Site Scripting)
  • Buffer Overflows
  • Malware & Botnets
  • Trusted computing
  • Electronic Voting
  • OS Security
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Softwaretechnik I (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
English
Credit hours 1:
2
Attendance:
Online, live
Learning target:
Fachkompetenz:
Kenntnisse der Schlüsseltechnologien der modernen Softwaretechnik, sowie der gängigen Software Entwicklungsprozesse. Dies umfasst insbesondere die Gebiete der System- und Anforderungsanalyse, Anwendungsdesign und Systemarchitektur, Implementierung, Validierung und Verifikation, Testen, Softwarequalität, Wartung und Weiterentwicklung von Softwaresystemen. Methodenkompetenz:
Die Fähigkeit große Softwaresysteme beschreiben, entwerfen und entwickeln zu können unter Berücksichtigung diverser Risiken, die in industriellen Großprojekten auftreten (bspw. Qualität, Kosten, unterschiedliche Stakeholder, Termindruck, …). Personale Kompetenz:
Fähigkeiten große Softwaresysteme im Team zu entwerfen, zu entwi-ckeln / implementieren, zu testen und auszuliefern.
Fähigkeiten ein komplexes Themengebiet in schriftlicher und mündli-cher Form klar und unmissverständlich wiederzugeben.
Recommended requirement:
Examination achievement:
schriftliche Präsenzprüfung
Instructor(s):
Prof. Dr. Colin Atkinson
Description:
Die Veranstaltung befasst sich mit dem Kennenlernen, Verstehen und Anwenden der Methoden, Techniken und Werkzeuge, die für eine team-orientierte, ingenieurmäßige Entwicklung von nicht-trivialen Softwaresystemen erforderlich sind. Insbesondere sind dies:
  • Software-Entwicklungsprozesse
  • System- und Anforderungsanalyse
  • Anwendungsdesign und Systemarchitektur
  • Softwarequalität
  • Validierung, Verifikation und Testen
  • Wartung und Weiterentwicklung
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Stochastik 2 (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Bachelor
Language of instruction:
German
Attendance:
On-campus and online, live & recorded
Instructor(s):
Prof. Dr. Martin Schlather
Theoretische Informatik (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
3
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
Die Studierenden beherrschen neue grundlegende Konzepte der Informatik, insbesondere im Themenkreis Berechenbarkeit, effiziente Berechenbarkeit, kryptographische Sicherheit. Sie kennen weiterhin grundlegende Techniken der  Komplexitätsanalyse und können diese auf gegebene Berechnungsprobleme anwenden.
Methodenkompetenz:
Die Studierenden können gegebenen Probleme bezüglich der zu ihrer
Lösung in verschiedener formaler Berechnungsmodelle aufzubringenden Ressourcen klassifizieren. Sie besitzen ein grundlegendes formales Verständnis für die wichtigsten Komplexitätsmerkmale wie nicht berechenbar, nicht effizient berechenbar, effizient berechenbar, kryptographisch sicher.

Personale Kompetenz:
Die Studierenden können Berechnungsprobleme in Anwendungszusammenhängen  identifizieren, sie formal  spezifizieren und bezüglich der zu ihrer Lösung nötigen Ressourcen  klassifizieren. Sie besitzen die Fähigkeit, auf höherem Niveau zu abstrahieren, mit formalen Modellierungstechniken zu arbeiten, und die Komplexität von Problemstellungen abzuschätzen.
Recommended requirement:
Examination achievement:
mündliche Prüfung
Instructor(s):
Prof. Dr. Matthias Krause, Alexander Moch
Description:
  • Grundlegende uniforme und nichtuniforme Berechnungsmodelle und Berechnungsparadigmen
  • Universelle Turingmaschinen und Berechenbarkeit
  • Logik- insbesondere SAT-Algorithmen
  • NP-Vollständigkeitstheorie
  • Formale Sprachen, Grammatiken, Grundlagen des Compilerbaus
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Wirtschaftsinformatik II: Grundlagen der Modellierung (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
German
Credit hours 1:
2
Attendance:
On-campus and online, live
Learning target:
Fachkompetenz:
  • Kenntnisse aktueller Modellierungssprachen und Werkzeugen.
  • Verständnis für Grundprinzipien und Formalen Grundlagen der Modellierung von Anwendungsdomänen und Prozessen.

Methodenkompetenz:
  • Beschreibung von Domänen und Prozesse einfacher und mittlerer Komplexität mit Hilfe gängiger Sprachen und Werkzeuge

Personale Kompetenz:
  • Verständnis komplexer Zusammenhänge, Arbeiten im Team, Kommunikation von Modellierungsentscheidungen
Recommended requirement:
Examination achievement:
Studienbeginn ab HWS 2011:
Erfolgreiche Teilnahme am Übungsbetrieb
Schriftliche Klausur (90 Minuten)

Studienbeginn vor HWS 2011:
Schriftliche Klausur (90 Minuten)

Instructor(s):
Prof. Dr. Heiner Stuckenschmidt, Dr. Christian Meilicke
Description:
Die Vorlesung behandelt die Rolle konzeptueller Modellierung in der Wirtschaftsinformatik. Es werden Vorteile und Grenzen der Modlelierung im Unternehmenkontext aufgezeigt und Modellierungssprachen und Werkzeuge eingeführt. Inhalte der Veranstaltung umfassen unter anderem:
  • Modellierungsprinzipien
  • Praxisnahe Sprachen (UML, BPMN)
  • Formale Grundlagen von Modellierungssprachen (Logik, Pertri-Netze)
  • Modellierungswerkzeuge.
In der begleitenden Übung erstellen die Teilnehmer konzpetuelle Modelle realer Anwendungsdomänen mit Hilfe aktueller Modellierungssprachen und Werkzeuge.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Wirtschaftsinformatik IV – IS 204 (Lecture)
DE
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor
Language of instruction:
German
Credit hours 1:
2
Attendance:
Online, recorded
Learning target:
The overall aim is to provide students with concepts of distributed systems from a theoretical and practical view. In the lecture students will learn the theoretical concepts. Some aspects of these topics will be elaborated in more detail in the exercise sessions. Here, concrete examples and implementations are presented and discussed.
Interactive tutorials complement the lectures and exercises and pro-vide means for the students to provide own solutions in essay and code to core problems of distributed information systems.
The students will get a profound base in distributed computing as well as networks with the associated problems and how to adress and solve these challenges.
Recommended requirement:
Examination achievement:
schiftliche Klausur (90 Minuten)
Description:
This lecture covers basic principles of modern information systems. Such systems are characterized by their distributed nature. Thus we will discuss architectures of information systems as well as underlying concepts of computer communication and distributed systems.
 
The following topics will be covered in the lecture:
  • Introduction to Distributed Systems, and ComputerNetworks
    • Distributed Systems: Characteristics and Requirements
    • Communication models
    • Layered communication networks
    • Reference Models (ISO/OSI, TCP/IP)
    • Communication Services: connection-oriented/less
    • Socket API
  • Middleware
    • Distributed Shared Memory
    • Message Passing
    • Pub/Sub
    • Mobile Agents
    • Multimedia
    • RPC, RMI
  • Application Protocols
    • SMTP
    • FTP
    • HTTP+HTML
    • IIOP
  • Presentation Layer
    • Classification
    • Requirements
    • Approaches
    • ASN.1
    • XDR
    • XML
  • Synchronization (conditional if covered in Praktische Informatik II)
    • Processes and concurrency
    • Race Conditions
    • Critical Regions
    • Semaphores/Monitors
    • Deadlocks
  • Time and Global States
    • Physical clocks (Cristian’s algorithm, Logical clocks, Lamport’s algorithm)
    • Vector Clocks
    • Global States
    • Snapshot Algorithm
  • Replication
    • Passive Replication
    • Active Replication
  • Peer to Peer Architectures
    • Application examples
    • Achitectures (centralized, distributed, hybrid)
    • Gnutella
    • Chord
  • Network Security Basics
    • Security Goals, Threats, Attacks
    • Security Mechanisms
    • Threats in Communication Networks
    • Security Goals & Requirements
    • Network Security Analysis
    • Safeguards
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.

Business Informatics (Master)

Advanced Process Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Attendance:
Live & on-campus
Examination achievement:
Exam is intended to be in person
Instructor(s):
Alexander Kraus, Adrian Rebmann
Algorithmik (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
3
Attendance:
On-campus and online, live & recorded
Learning target:
Fachkompetenz:
Die Studierenden erlernen wichtige und anspruchsvolle Verfahren zur Lösung komplexer Probleme vorwiegend im Bereich der diskreten Optimierung und der Analyse der Verfahren.
Methodenkompetenz:
Anhand praktischer Probleme aus dem Bereich des  Operation Research erlernen sie wie man diese Probleme  abstrahiert und  mittels der erlernten Verfahren einer Lösung zuführt.
Personale Kompetenz:
Ihr analytisches, konzentriertes und präzises Denken wird  geschult. Durch die eigenständige Behandlung von Anwendungen z. B. aus dem Bereich Operations Research im Rahmen der Übungsaufgaben wird ihr Abstraktionsvermögen weiterentwickelt und der Transfer des erlernten Stoffes auf verwandte Fragestellungen gefördert. Durch die Auseinandersetzung mit der Thematik von P versus NP und der beispielhaften Behandlung von praktisch relevanten NP-vollständigen Problemen werden sie  sensibilisiert  für die Thematik der effizienten Lösbarkeit.
Recommended requirement:
Examination achievement:
schriftliche Klausur
Instructor(s):
Prof. Dr. Matthias Krause, Alexander Moch
Description:
Aufbauend auf der Veranstaltung Algorithmen und Datenstrukturen werden fortgeschrittene Konzepte und Algorithmen unter Einbeziehung der Korrektheit und Kosten der Verfahren behandelt. Dabei stehen Fragestellungen, die einen Bezug zu wirtschaftswissenschaftlichen Anwendungen haben im Fokus. Besonderes Augenmerk liegt dabei auf der Abbildung von konkreten praktischen Problemen, auf den Konzepten und deren Lösung mittels der Algorithmen. Die Problematik der nicht effizient (P versus NP) berechenbaren Probleme wird diskutiert und Heuristiken für NP-vollständige Optimierungsprobleme behandelt. Behandelte Fragestellungen sind z. B.:
  • Netzwerke und Algorithmen auf Netzwerken, Max-flow, Min-cost,
  • Matching bipartit, non bipartit, gewichtete
  • Stabiles Heiratsproblem
  • Zuweisungsproblem
  • Touren in Graphen: Handelsreisender, Chinesischer Briefträger
  • SAT-Algorithmen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Applied Topology II (Lecture)
EN
Course type:
Lecture
ECTS:
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Attendance:
On-campus and online, live
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
CS 710 Data Science Seminar (Seminar)
EN
Course type:
Seminar
ECTS:
4.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Heiko Paulheim
Data Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Bachelor, Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Registration procedure:
Please note that there is no second date for the exam.
Learning target:
Expertise:
Students will acquire basic knowledge of the techniques, opportunities and applications of data mining. Methodological competence:
  • Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.
  • project organisation skills

Personal competence:

  • team work skills
  • presentation skills
Recommended requirement:
Examination achievement:
Written examination (90 minutes), project report, oral project presentation
Instructor(s):
Prof. Dr. Christian Bizer
Description:
The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course will cover the following topics:
  • Goals and Principles of Data Mining
  • Data Representation and Preprocessing
  • Clustering
  • Classification
  • Association Analysis
  • Text Mining
  • Systems and Applications (e. g. Retail, Finance, Web Analysis)
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Mining II (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire knowledge of advanced techniques and applications of data mining.
Methodological competence:
  • Successful participants will be able to address advanced issues in data mining projects, conduct complex projects and develop applications in the data mining field.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills
Recommended requirement:
Examination achievement:
written examination (90 minutes), written project report, oral project presentation
Instructor(s):
Prof. Dr. Heiko Paulheim
Description:
Data mining deals with the discovery of patterns in data, and with making predictions for the future, based on observations of the past. This course covers advanced issues in data mining which need to be addressed when applying data mining methods in real world projects, including:
  • Data Preprocessing
  • Regression and Forecasting
  • Dimensionality Reduction
  • Anomaly Detection
  • Time Series Analysis
  • Parameter Tuning
  • Ensemble Learning
  • Online Learning
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Data Security and Privacy (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Bachelor, Master
Language of instruction:
English
Attendance:
Live & on-campus
Examination achievement:
schriftliche Klausur in Präsenz
Instructor(s):
Prof. Dr. Frederik Armknecht
Database Systems II (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Online, live
Learning target:
Fachkompetenz:
  • Grundlegende Kenntnisse in verteilte relationale Datenbanken
  • objektorientierte Datenbanken
  • objektrelationale Datenbanken
  • deduktive Datenbanken
  • XML-Datenbanken
  • OLAP/OLTP
  • Leistungsbewertung

Methodenkompetenz:

  • Verständnis der alternativen Datenrepräsentationen, deren Vor- und Nachteile
  • Zielorientierter Einsatz der verschiedenen Datenrepräsentationen

Personale Kompetenz:

  • Verständnis der Rolle alternativer Datenmodelle für fundamentale betriebliche Informationssysteme
Recommended requirement:
Examination achievement:
schriftliche Präsenzprüfung
Instructor(s):
Prof. Dr. Guido Moerkotte
Description:
Über das relationale Modell hinausgehende Themen (objektorientierte, objektrelationale Datenbanken, SQL/XML).
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Database Systems II (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Learning target:
Fachkompetenz:
  • Grundlegende Kenntnisse in verteilte relationale Datenbanken
  • objektorientierte Datenbanken
  • objektrelationale Datenbanken
  • deduktive Datenbanken
  • XML-Datenbanken
  • OLAP/OLTP
  • Leistungsbewertung

Methodenkompetenz:

  • Verständnis der alternativen Datenrepräsentationen, deren Vor- und Nachteile
  • Zielorientierter Einsatz der verschiedenen Datenrepräsentationen

Personale Kompetenz:

  • Verständnis der Rolle alternativer Datenmodelle für fundamentale betriebliche Informationssysteme
Recommended requirement:
Examination achievement:
schriftliche Präsenzprüfung
Instructor(s):
Prof. Dr. Guido Moerkotte
Description:
Über das relationale Modell hinausgehende Themen (objektorientierte, objektrelationale Datenbanken, SQL/XML).
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Database Technology (Lecture)
EN
Course type:
Lecture
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Instructor(s):
Prof. Dr. Heiko Paulheim
Deep Learning Vorlesung (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Attendance:
Live & on-campus
Examination achievement:
Oral examination; Homework Assignments (pass at least 2 assignments)
Instructor(s):
Prof. Dr. Rainer Gemulla
Information Retrieval and Web Search (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
On-campus and online, live
Learning target:
Expertise:
Students will acquire knowledge of fundamental techniques of Information Retrieval and Web Search, including standard retrieval models, evaluation of information retrieval systems, text classification and clustering, as well as web search topics such as crawling and link-based algorithms.
Methodological competence:
Successful participants will be able to understand state-of-the-art methods for Information Retrieval and Web search, as well as being able to select, apply and evaluate the most appropriate techniques for a variety of different search scenarios.
Personal competence:
  • presentation skills;
  • team work skills.
Recommended requirement:
Examination achievement:
Written examination (90 minutes), written project report, oral project presentation
Instructor(s):
Prof. Dr. Simone Paolo Ponzetto
Description:
Given the vastness and richness of the Web, users need high-performing, scalable and efficient methods to access its wealth of information and satisfy their information needs. As such, being able to search and effectively retrieve relevant pieces of information from large text collections is a crucial task for the majority (if practically not all) of Web applications. In this course we will explore a variety of basic and advanced techniques for text-based information retrieval and Web search. Covered topics will include:
 
  • Efficient text indexing;
  • Boolean and vector space retrieval models;
  • Evaluation of retrieval systems;
  • Probabilistic Information Retrieval;
  • Text classification and clustering;
  • Web search, crawling and link-based algorithms.

Coursework will include homework assignments, a term project and a final exam. Homework assignments are meant to introduce the students to the problems that will be covered in the final exam at the end of the course. In addition, students are expected to successfully complete a term project in teams of 2–4 people. The projects will focus on a variety of IR problems covered in class. Project deliverables include both software (i.e., code and documentation) and a short report explaining the work performed and its evaluation.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAA 504 Partial differential equations (Lecture)
EN
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Attendance:
Online, recorded
Learning target:
Fachkompetenz:
Vertrautheit mit den Grundbegriffen partieller Differenzialgleichungen (MK1)
Vertrautheit mit Distributionen, Hölderräumen und Sobolevräumen (MK1)
Vertrautheit mit Sobolevungleichungen (MK1)
Verständnis des Konzepts der schwachen Lösung (MK1, MO2)
Verständnis des Randverhaltens von Lösungen (MK1, MO2)
Methodenkompetenz:
Fähigkeit die Existenz von Lösungen zu untersuchen (MO2)
Fähigkeit die Eindeutigkeit von Lösungen zu untersuchen (MO2)
Fähigkeit die Regularität von Lösungen zu untersuchen (MO2)
Personale Kompetenz:
Vertieftes Verständnis für komplexe Argumentationen in der elliptischen Theorie (MO3)
Recommended requirement:
Examination achievement:
mündliche Prüfung
Instructor(s):
Prof. Dr. Martin Schmidt
Description:
Elliptische Differenzialgleichungen
Funktionenräume
Randwertproblem, Dirichletproblem
Apriori Abschätzungen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAA 506 Topologie und Gleichgewichte (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
Live & on-campus
Learning target:
Fachkompetenz:
Verständnis der Grundlagen der mengentheoretischen Topologie (MK1)
Beschreibung topologischer und geometrischer Eigenschaften durch algebraische und numerische Invarianten (MK1, MO2)
Umgang mit (simplizialen) Homologiegruppen (MK1, MO2)
Verständnis der Eigenschaften und der Bedingungen für die Existenz von Nash-Gleichgewichten und Walras'schen Gleichgewichten (MK2, MO3)
Methodenkompetenz:
Umgang mit einfachen topologischen Räumen und Entscheidung über Homöomorphie zweier gegebener Räume (MK1)
Triangulierung einfacher kompakter Räume und Berechnung ihrer Homologie (MK1, MO2)
Interpretation der Homologiegruppen (MK1, MO2)
Berechnung von Nash-Gleichgewichten (MK2, MF2)
Personale Kompetenz:
Verständnis der Rolle topologischer Modelle für die Lösung fundamentaler mikroökonomischer Fragestellungen (MK2, MO2, MO3, MO4)
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
apl. Prof. Dr. Wolfgang Seiler
Description:
Topologische Räume und stetige Abbildungen
Zusammenhang, Kompaktheit, 1-Abzählbarkeit
Endliche simpliziale Komplexe und ihre Homologie
Anwendung auf Fixpunktsätze, Fundamentalsatz der Algebra u.ä.
Korrespondenzen und der Fixpunktsatz von Kakutani
Spiele und ihre Nash-Gleichgewichte
Volkswirtschaftliche Systeme und Walras'sche Gleichgewichte
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAA 519 Stochastic Calculus (Lecture)
EN
Course type:
Lecture
ECTS:
5.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Attendance:
Online, recorded
Instructor(s):
Prof. Dr. David Johannes Prömel
Description:
Brownian motion and martingales in continuous time, Stochastic integration and Ito formula, solution theory for stochastic differential equations (strong solutions, linear SDEs), change of measure (Girsanov theorem), martingale representation theorem
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAB 502 Algebraische Zahlentheorie (Lecture)
DE
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
Online, live
Learning target:
Fachkompetenz:
Solides Verständnis für grundlegende Fragen der algebraischen Zahlentheorie
Methodenkompetenz:
Fähigkeit, abstrakte algebraische Techniken in einem konkreten komplexen mathematischen Kontext anzuwenden.
Personale Kompetenz:
Fähigkeit, in abstrakten Strukturen zu denken; Ahnung von heutiger Forschung (Stichwort: „Langlandsprogramm“)
Recommended requirement:
Examination achievement:
Mündliche Prüfung oder schriftliche Klausur
Instructor(s):
Dr. Thomas Reichelt
Description:
Begriff der Ganzheit, Dedekindringe, Ringerweiterungen, Klassenzahl, Dirichletscher Einheitensatz, Verzweigungstheorie,
Bewertungen, Lokalisierungen, Adelisierungen, Kreisteilungskörper als Spezialfall, Ausblick auf Zetafunktionen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAB 506 Game Theory (Lecture)
EN
Course type:
Lecture
ECTS:
8.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Learning target:
Fachkompetenz:
Fundierte Kenntnisse der Spieltheorie (MK1).
Bekanntschaft mit einigen Anwendungen in den Wirtschaftswissenschaften (MK2).
Methodenkompetenz:
Alle wissenschaftlichen Arbeiten zur Spieltheorie lesen können (MF1, MO3).
Bei konkreten Situationen vor allem in den Wirtschaftswissenschaften diese in Modellen der Spieltheorie fassen und analysieren können (MF2).
Personale Kompetenz:
Strategisches Denken mit Bedacht einsetzen können (MO4).
Recommended requirement:
Examination achievement:
schriftliche Klausur
Description:
Grundlagen der Spieltheorie. Spiele in Normalform, Nash-Gleichgewichte, Nullsummenspiele, extensive Spiele (mit oder ohne Zufall und mit oder ohne perfekte Information), teilspielperfekte Gleichgewichte, kooperative Spiele, Shapley-Wert, in Form von Beispielen Anwendungen auf die Wirtschaftswissenschaften.
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAC 502 Computational Finance (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Examination achievement:
Mündliche Prüfung
Instructor(s):
Prof. Dr. Andreas Neuenkirch
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAC 507 Nonlinear Optimization (Lecture)
EN
Course type:
Lecture
ECTS:
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Instructor(s):
Prof. Dr. Simone Göttlich
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAC 510 Numerik partieller Differentialgleichungen (Lecture)
DE
Course type:
Lecture
ECTS:
Course suitable for:
Master
Language of instruction:
German
Credit hours 1:
4
Attendance:
Online, live
Examination achievement:
mündliche Prüfung
Instructor(s):
Prof. Dr. Simone Göttlich
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Markov Processes (Lecture)
EN
Course type:
Lecture
ECTS:
5
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Online, recorded
Recommended requirement:
Examination achievement:
Mündliche Prüfung
Instructor(s):
Prof. Dr. Martin Slowik
Description:
The topic of this lecture are Markov processes in continuous time which are an important class of stochastic processes. We also introduce operator semigroups, generators and stochastic equations which provide approaches to the characterisation of Markov processes. The theory will be illustrated with many examples. The course will cover a part of the following topics:

– Construction of stochastic processes (Theorem of Daniel-Kolmogorov)
– Stopping and optional times and stopped processes
– Markov processes and its properties (Markov property, strong Markov property, forward and backward equation)
– Construction of Markov processes via the transition function
– Semigroups of linear operators, resolvents and generators (Theorem of Hille-Yoshida) and its relation to Markov processes
– Relation between Markov processes and martingales (Dynkin martingale)
– functionals of Markov processes and partial differential equations
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
MAS 510 Diffusion Equations (Seminar)
EN
Course type:
Seminar
ECTS:
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Instructor(s):
Prof. Li Chen
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Parallel Programming (Lecture w/ Exercise)
EN
Course type:
Lecture w/ Exercise
ECTS:
6.0 (Modul/e)
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
4
Attendance:
Online, live & recorded
Learning target:

Expertise:

  • Know various forms of parallelism.

(MK1, MK2, MF1, MF3) 

Methodological competence:

  • Students will be able to use various forms of parallelism in software projects.

(MF1, MF2, MF3) 

Personal competence:

  • Learn how to read software documentation. 
  • Teamwork skills. 

(MK01, MK02) 

Recommended requirement:
Literature:
Schmidt, Bertil; Gonzalez-Dominguez, Jorge; Hundt, Christian; Schlarb, Moritz (2017). Parallel Programming: Concepts and Practice. ISBN-13: 978-0128498903. ISBN-10: 0128498900.
Examination achievement:
Written examination (90 minutes)
Instructor(s):
Prof. Dr.-Ing. Roland Leißa
Description:
In this course we will talk about various forms of paralleilsm:
  • multi-threading
  • SIMD vectorization
  • GPUs
  • distributed systems

In order to target these hardware architectures, we will also discuss several programming languages/systems such as:

  • Java
  • C/C++
  • OpenCL/CUDA
  • assembly language
  • OpenMP
  • MPI
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Query Optimization (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Online, live
Learning target:
Fachkompetenz:
  • Verständnis der Grundlegenden Funktionsweisen alternativer Plangeneratoren,
  • detaillierte Kenntnisse physischer Planalternativen,
  • detaillierte Kostenanalysen

Methodenkompetenz:

  • Algorithmen und Komplexitäten der Plangenerierung,
  • Kostenrechnung anhand gegebener Statistiken

Personale Kompetenz:

  • Fundamentales Verständnis für die Probleme und Lösungen der traditionellen Anfragebearbeitung
Recommended requirement:
Examination achievement:
mündliche Präsenzprüfung
Instructor(s):
Prof. Dr. Guido Moerkotte
Description:
Grundlagen der Anfrageoptimierung
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Seminar Graph Theory (Seminar)
EN
Course type:
Seminar
ECTS:
4.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.
Wahrscheinlichkeitstheorie I – Grundlagen und Grenzwertsätze (Lecture)
EN
Course type:
Lecture
ECTS:
8.0
Course suitable for:
Master
Language of instruction:
English
Attendance:
On-campus and online, live
Examination achievement:
mündliche Prüfung
Instructor(s):
Prof. Dr. Leif Döring
Description:
Martingales and their convergence theory (including a proof of the law of large numbers), weak convergence theory (including a proof of the central limit theorem), Brownian motion (including the Donsker theorem).
Web Mining (Lecture)
EN
Course type:
Lecture
ECTS:
6.0
Course suitable for:
Master
Language of instruction:
English
Credit hours 1:
2
Attendance:
Live & on-campus
Learning target:
Expertise:
Students will acquire knowledge of the techniques, opportunities and applications of Web mining. Methodological competence:
  • Successful participants will be able to identify opportunities for mining knowledge from Web content, select and apply appropriate techniques and interpret the results.
  • project organization skills

Personal competence:

  • presentation skills
  • team work skills
Recommended requirement:
Examination achievement:
Offline exam / Präsenzklausur
Instructor(s):
Prof. Dr. Christian Bizer
Description:
The textual content as well as the structured data which is accessible on the Web has an enormous potential for being mined to derive knowledge about nearly any aspect of human life. The course covers advanced data mining techniques for extracting knowledge from Web content as a basis for business decisions and applications. The course will cover the following topics:
  • Goals and Principles of Web Mining
  • Gathering and Preprocessing Web Data
  • Social Network Analysis
  • Opinion Mining and Sentiment Analysis
  • Web Usage Mining
  • Executing Large Scale Web Mining Tasks
More information
1 Credit hours indicate the duration of a course which is offered weekly during one semester. One credit hour equals 45 minutes.