Algorithmen sind akzeptiert – aber nur, wenn der Mensch das letzte Wort hat

Bei KI-gestützten Entscheidungen wird nicht der Einsatz von Algorithmen selbst als kritisch angesehen, sondern die fehlende menschliche Kontrolle. Das ist das Ergebnis einer neuen Studie um die Daten­wissenschaft­ler Professor Florian Keusch und Professorin Frauke Kreuter.

Pressemitteilung vom 18. Januar 2022
Druckversion (PDF)

Als Ende 2020 die österreichische Arbeits­markt­agentur AMS einen Algorithmus einsetzte, um die Art der Job- und Weiterbildungs­angebote an die individuellen Profile von Arbeits­suchenden anzupassen, war die öffentliche Aufregung in Österreich groß. Viele kritisierten das Vorgehen, weil es auf historischen Daten basierte und damit potenziell Menschen benachteilige, die schon in der Vergangenheit am Job­markt diskriminiert wurden: Frauen erhielten beispielsweise per se einen Punktabzug, Mütter mussten einen weiteren Punktabzug hinnehmen. Dies hätte wiederum ihre Chancen verringern können, an Wiedereingliederungs­maßnahmen teilzunehmen.

Aber nicht nur auf dem Arbeits­markt, auch im Banken- und Personalwesen oder in der Medizin ist der Einsatz von Algorithmen verbreitet – und wird kontrovers diskutiert. Wie es um die Akzeptanz von Algorithmus-basierten Entscheidungen steht, hat der Mannheimer Daten­wissenschaft­ler Prof. Dr. Florian Keusch in Zusammenarbeit mit Prof. Dr. Frauke Kreuter von der Ludwig-Maximilians-Universität München unter­sucht. Ihre Studie belegt, dass Entscheidungen, an denen Menschen beteiligt sind, als fairer beurteilt werden als solche, die ein Algorithmus allein trifft.

„Die Ergebnisse lassen darauf schließen, dass die Nutzung von Algorithmen ohne zusätzliche Kontrolle durch den Menschen als besonders problematisch angesehen wird“, konstatiert Keusch. „Es ist also nicht der Einsatz von Algorithmen an sich, der umstritten ist“, so der Mannheimer Professor weiter.

Die Forschenden haben für ihre Studie im Rahmen des German Internet Panels (GIP) mehr als 4.000 Menschen online befragt. Diese mussten Fragen beantworten, wie fair und akzeptabel sie die Nutzung von KI-gestützten Entscheidungen in vier unter­schiedlichen Szenarien beurteilen: bei der Vergabe eines Finanz­produkts, bei Job-Bewerbungen, bei Gefängnisstrafen und bei Maßnahmen für Arbeits­suchende.

In allen vier Bereichen ist der Einsatz von KI schon heute zumindest in Teilen Realität. Das so genannte automated decision making (ADM) wird von Unter­nehmen und staatlichen Einrichtungen genutzt, um vor allem die Effizienz von Entscheidungs­prozessen zu erhöhen und den Einfluss persönlicher Einstellungen der Entscheider zu reduzieren. Dabei wird oftmals die Aufgabe zwischen Mensch und Maschine geteilt: Bewerben sich beispielsweise Hunderte von Kandidatinnen und Kandidaten auf einen Job, sortiert ein Computer­programm auf Basis von historischen Daten die Auswahl schon einmal vor und die oder der Zuständige trifft dann die endgültige Entscheidung. Dass eine Maschine allein eine Entscheidung trifft, ist noch eine Seltenheit. Aber es sei durchaus denkbar, dass bestimmte Prozesse künftig komplett automatisiert würden, sagen die Studien­autoren. 

Wo es um Akzeptanz geht, ist meist auch Trans­parenz ein großes Thema. Viele Algorithmen ähneln einer Blackbox – selbst für diejenigen, die sie verwenden. Der Grund: Sie werden teilweise extern eingekauft, so dass Entscheidende selbst gar nicht wissen, wie der Algorithmus zu seinem Ergebnis kommt. „Aus wissenschaft­licher und gesellschaft­licher Sicht ist es natürlich wünschenswert zu wissen, wie der Algorithmus einzelne Kriterien gewichtet“, so Keusch. Auch das sei eine wichtige Voraussetzung für dessen gesellschaft­liche Akzeptanz.

Link zum Ergebnisbericht der Studie: https://www.sowi.uni-mannheim.de/media/Lehrstuehle/sowi/Kreuter/Dateien/Algo_GIP_Bericht_220128.pdf

Kontakt:
Prof. Dr. Florian Keusch
Lehr­stuhl für Statistik und sozial­wissenschaft­liche Methodenlehre
Universität Mannheim
Tel: +49 621 181-3214
E-Mail: f.keuschmail-uni-mannheim.de

Prof. Dr. Frauke Kreuter
Lehr­stuhl für Statistik und Data Science
Institut für Statistik
Ludwig-Maximilians-Universität München
Tel: +49 89 2180 2814
E-Mail: frauke.kreutermail-stat.uni-muenchen.de

Yvonne Kaul
Forschungs­kommunikation
Universität Mannheim
Tel: +49 621 181-1266
E-Mail: kaulmail-uni-mannheim.de